【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试

这篇具有很好参考价值的文章主要介绍了【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、DHT11简介

1.1 DHT11模块硬件设计

1.2 DHT11模块软件设计

1.3 DHT11通讯协议

1.4 DHT11数据格式

二、相关代码

2.1 驱动代码

2.2 测试代码

2.3 上板子测试


一、DHT11简介

DHT11是一款可测量温度和湿度的传感器。比如市面上一些空气加湿器,会测量空气中湿度,再根据测量结果决定是否继续加湿。
DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器,具有超小体积、极低功耗的特点,使用单根总线与主机进行双向的串行数据传输。DHT11测量温度的精度为± 2℃,检测范围为-20℃ -60℃。湿度的精度为± 5%RH,检测范围为 5%RH-95%RH,常用于对精度和实时性要求不高的温湿度测量场合。

1.1 DHT11模块硬件设计

主机通过一条数据线与DH11连接,主机通过这条线发命令给DHT11,DHT11再通过这条线把数据发送给主机。
【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试,Linux驱动开发,学习,驱动开发,linux,嵌入式硬件,交互

1.2 DHT11模块软件设计

DHT11的硬件电路比较简单,核心要点就是:主机发给DHT11的命令格式和DHT11返回的数据格式。

1.3 DHT11通讯协议

通讯过程如图所示:

【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试,Linux驱动开发,学习,驱动开发,linux,嵌入式硬件,交互

 【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试,Linux驱动开发,学习,驱动开发,linux,嵌入式硬件,交互

当主机没有与 DHT11 通信时,总线处于空闲状态,此时总线电平由于上拉电阻的作用处于高电平

当主机与 DHT11 正在通信时,总线处于通信状态,一次完整的通信过程如下:

a) 主机将对应的 GPIO 管脚配置为输出,准备向 DHT11 发送数据;

b)主机发送一个开始信号:开始信号 = 一个低脉冲 + 一个高脉冲。低脉冲至少持续 18ms,高脉冲持续 20-40us。

c) 主机将对应的 GPIO 管脚配置为输入,准备接受 DHT11 传来的数据,这时信号由上拉电阻拉高;

d) DHT11 发出响应信号:响应信号 = 一个低脉冲 + 一个高脉冲。低脉冲持续 80us,高脉冲持续 80us。
e) DHT11 发出数据信号:

  • 数据为 0 的一位信号 = 一个低脉冲 + 一个高脉冲。低脉冲持续50us,高脉冲持续 26~28us。
  • 数据为 1 的一位信号 = 一个低脉冲 + 一个高脉冲。低脉冲持续50us,高脉冲持续 70us。

f) DHT11 发出结束信号: 最后 1bit 数据传送完毕后, DHT11 拉低总线 50us,然后释放总线,总线由上拉电阻拉高进入空闲状态

【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试,Linux驱动开发,学习,驱动开发,linux,嵌入式硬件,交互【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试,Linux驱动开发,学习,驱动开发,linux,嵌入式硬件,交互

1.4 DHT11数据格式

 8bit 湿度整数数据 + 8bit 湿度小数数据 + 8bi 温度整数数据 + 8bit 温度小数数据 + 8bit 校验和。数据传送正确时,校验和等于“8bit 湿度整数数据+8bit 湿度小数数据+8bi温度整数数据+8bit 温度小数数据”所得结果的末 8 位。

二、相关代码

2.1 驱动代码

#include "asm-generic/errno-base.h"
#include "asm-generic/gpio.h"
#include "linux/jiffies.h"
#include <linux/module.h>
#include <linux/poll.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>

struct gpio_desc{
	int gpio;
	int irq;
    char *name;
    int key;
	struct timer_list key_timer;
} ;

static struct gpio_desc gpios[] = {
    {115, 0, "dht11", },
};

/* 主设备号                                                                 */
static int major = 0;
static struct class *gpio_class;

static u64 g_dht11_irq_time[84];
static int g_dht11_irq_cnt = 0;

/* 环形缓冲区 */
#define BUF_LEN 128
static char g_keys[BUF_LEN];
static int r, w;

struct fasync_struct *button_fasync;

static irqreturn_t dht11_isr(int irq, void *dev_id);
static void parse_dht11_datas(void);

#define NEXT_POS(x) ((x+1) % BUF_LEN)

static int is_key_buf_empty(void)
{
	return (r == w);
}

static int is_key_buf_full(void)
{
	return (r == NEXT_POS(w));
}

static void put_key(char key)
{
	if (!is_key_buf_full())
	{
		g_keys[w] = key;
		w = NEXT_POS(w);
	}
}

static char get_key(void)
{
	char key = 0;
	if (!is_key_buf_empty())
	{
		key = g_keys[r];
		r = NEXT_POS(r);
	}
	return key;
}


static DECLARE_WAIT_QUEUE_HEAD(gpio_wait);

// static void key_timer_expire(struct timer_list *t)
static void key_timer_expire(unsigned long data)
{
	// 解析数据, 放入环形buffer, 唤醒APP
	parse_dht11_datas();
}


/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t dht11_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	int err;
	char kern_buf[2];

	if (size != 2)
		return -EINVAL;

	g_dht11_irq_cnt = 0;

	/* 1. 发送18ms的低脉冲 */
	err = gpio_request(gpios[0].gpio, gpios[0].name);
	gpio_direction_output(gpios[0].gpio, 0);
	gpio_free(gpios[0].gpio);

	mdelay(18);
	/* 引脚变为输入方向, 由上拉电阻拉为1,*/
	/* 当主机没有与DHT11通信时,总线处于空闲状态,
	此时总线电平由于上拉电阻的作用处于高电平*/
	gpio_direction_input(gpios[0].gpio);  

	/* 2. 注册中断 后面的语句执行时可能会导致前几次的中断丢失*/
	err = request_irq(gpios[0].irq, dht11_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, gpios[0].name, &gpios[0]);
	mod_timer(&gpios[0].key_timer, jiffies + 10);修改定时器的超时时间= jiffies(当前时间) + 10	

	/* 3. 休眠等待数据 */
	//等待 条件为真(有数据时),才会被唤醒并执行后面语句
	wait_event_interruptible(gpio_wait, !is_key_buf_empty());

	free_irq(gpios[0].irq, &gpios[0]);

	//printk("%s %s %d\n", __FILE__, __FUNCTION__, __LINE__);

	/* 设置DHT11 GPIO引脚的初始状态: output 1 保险起见手动设置高电平
	最后 1bit 数据传送完毕后, DHT11 拉低总线 50us,然后释放总线,总线由
    上拉电阻拉高进入空闲状态*/
	err = gpio_request(gpios[0].gpio, gpios[0].name);
	if (err)
	{
		printk("%s %s %d, gpio_request err\n", __FILE__, __FUNCTION__, __LINE__);
	}
	gpio_direction_output(gpios[0].gpio, 1);
	gpio_free(gpios[0].gpio);


	/* 4. copy_to_user */
	kern_buf[0] = get_key();
	kern_buf[1] = get_key();

	printk("get val : 0x%x, 0x%x\n", kern_buf[0], kern_buf[1]);
	if ((kern_buf[0] == (char)-1) && (kern_buf[1] == (char)-1))
	{
		printk("get err val\n");
		return -EIO;
	}

	err = copy_to_user(buf, kern_buf, 2);
	
	return 2;
}

static int dht11_release (struct inode *inode, struct file *filp)
{
	return 0;
}


/* 定义自己的file_operations结构体                                              */
static struct file_operations dht11_drv = {
	.owner	 = THIS_MODULE,
	.read    = dht11_read,
	.release = dht11_release,
};

//解析数据
static void parse_dht11_datas(void)
{
	int i;
	u64 high_time;
	unsigned char data = 0;
	int bits = 0;
	unsigned char datas[5];//40位 5个字节
	int byte = 0;
	unsigned char crc;

	/* 中断发生次数: 可能是81、82、83、84 */
	if (g_dht11_irq_cnt < 81)
	{
		/* 出错 */
		put_key(-1);
		put_key(-1);

		// 唤醒APP
		wake_up_interruptible(&gpio_wait);
		g_dht11_irq_cnt = 0;
		return;
	}

	// 解析数据, 81、82、83、84 
	for (i = g_dht11_irq_cnt - 80; i < g_dht11_irq_cnt; i += 2)
	{
		high_time = g_dht11_irq_time[i] - g_dht11_irq_time[i-1];//高脉冲时间

		data <<= 1;//左移一位

		//50us = 50000ns
		//如果数据是高电平
		if (high_time > 50000) /* data 1 */
		{
			data |= 1;//或
		}

		bits++;

		if (bits == 8)
		{
			datas[byte] = data;
			data = 0;
			bits = 0;
			byte++;
		}
	}

	// 放入环形buffer
	crc = datas[0] + datas[1] + datas[2] + datas[3];
	if (crc == datas[4])
	{
		put_key(datas[0]);
		put_key(datas[2]);
	}
	else
	{
		put_key(-1);
		put_key(-1);
	}

	g_dht11_irq_cnt = 0;
	// 唤醒APP
	wake_up_interruptible(&gpio_wait);
}

static irqreturn_t dht11_isr(int irq, void *dev_id)
{
	struct gpio_desc *gpio_desc = dev_id;
	u64 time;
	
	/* 1. 记录中断发生的时间 */
	time = ktime_get_ns();//单位ns 精准的到当前时间
	//static u64 g_dht11_irq_time[84]; static int g_dht11_irq_cnt = 0;
	g_dht11_irq_time[g_dht11_irq_cnt] = time;

	/* 2. 累计次数 */
	g_dht11_irq_cnt++;

	/* 3. 次数足够: 解析数据, 放入环形buffer, 唤醒APP */
	if (g_dht11_irq_cnt == 84)
	{
		del_timer(&gpio_desc->key_timer);
		parse_dht11_datas();//解析数据
	}

	return IRQ_HANDLED;
}


/* 在入口函数 */
static int __init dht11_init(void)
{
    int err;
    int i;
    int count = sizeof(gpios)/sizeof(gpios[0]);//count = 1
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	
	for (i = 0; i < count; i++)
	{		
		gpios[i].irq  = gpio_to_irq(gpios[i].gpio);

		/* 设置DHT11 GPIO引脚的初始状态: output 1 */
		err = gpio_request(gpios[i].gpio, gpios[i].name); //申请gpio
		gpio_direction_output(gpios[i].gpio, 1);		  //输出方向,高电平
		gpio_free(gpios[i].gpio);						  //释放引脚

		//设置定时器:定时器结构体,定时器超时函数,传给超时函数的参数
		setup_timer(&gpios[i].key_timer, key_timer_expire, (unsigned long)&gpios[i]);
		//gpios[i].key_timer.expires = ~0;
		//add_timer(&gpios[i].key_timer);
		//err = request_irq(gpios[i].irq, dht11_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, "100ask_gpio_key", &gpios[i]);
	}

	/* 注册file_operations 	*/
	major = register_chrdev(0, "100ask_dht11", &dht11_drv);  /* /dev/gpio_desc */

	gpio_class = class_create(THIS_MODULE, "100ask_dht11_class");
	if (IS_ERR(gpio_class)) {
		printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
		unregister_chrdev(major, "100ask_dht11");
		return PTR_ERR(gpio_class);
	}

	device_create(gpio_class, NULL, MKDEV(major, 0), NULL, "mydht11"); /* /dev/mydht11 */
	
	return err;
}

/* 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数*/
static void __exit dht11_exit(void)
{
    int i;
    int count = sizeof(gpios)/sizeof(gpios[0]);
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

	device_destroy(gpio_class, MKDEV(major, 0));
	class_destroy(gpio_class);
	unregister_chrdev(major, "100ask_dht11");

	for (i = 0; i < count; i++)
	{
		//free_irq(gpios[i].irq, &gpios[i]);
		del_timer(&gpios[i].key_timer);
	}
}


/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */

module_init(dht11_init);
module_exit(dht11_exit);

MODULE_LICENSE("GPL");


2.2 测试代码


#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <poll.h>
#include <signal.h>

static int fd;

/*
 * ./button_test /dev/mydht11
 *
 */
int main(int argc, char **argv)
{
	char buf[2];
	int ret;

	int i;
	
	/* 1. 判断参数 */
	if (argc != 2) 
	{
		printf("Usage: %s <dev>\n", argv[0]);
		return -1;
	}

	/* 2. 打开文件 */
	fd = open(argv[1], O_RDWR | O_NONBLOCK);
	if (fd == -1)
	{
		printf("can not open file %s\n", argv[1]);
		return -1;
	}

	while (1)
	{
		if (read(fd, buf, 2) == 2)
			printf("get Humidity: %d, Temperature : %d\n", buf[0], buf[1]);
		else
			printf("get dht11: -1\n");

		sleep(5);
	}
	close(fd);
	return 0;
}


2.3 上板子测试

可以看到测到的温度和湿度数值都是正常的,但偶尔会测得失败的数据,这是因为在驱动程序里注册中断函数后,后面的语句执行花时间,可能会导致前几次的中断丢失。经测试如果中断发生次数小于81,则会测得错误数据;中断发生次数在81~84(含等于)就可测得准确数值。

【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试,Linux驱动开发,学习,驱动开发,linux,嵌入式硬件,交互文章来源地址https://www.toymoban.com/news/detail-660709.html

到了这里,关于【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【IMX6ULL驱动开发学习】08.IMX6ULL通过GPIO子系统函数点亮LED

    通过GPIO子系统函数点亮LED 1、GPIO子系统函数 1.1 确定 led 的GPIO标号,查看内核中的gpiochip 查看 gpiochip ,以正点原子的IMX6ULL阿尔法开发板为例 查看原理图,发现led接的引脚是 GPIO1_IO3,对应 /sys/kernel/debug/gpio 中的 gpiochip0 组,gpiochip0 组从0开始算起, 所以 GPIO1_IO3 对应的标号就

    2024年02月10日
    浏览(67)
  • 【IMX6ULL驱动开发学习】03.设置IMX6ULL开发板与虚拟机在同一网段(设置开发板静态IP)

    为什么要设置IMX6ULL与虚拟机通信? 因为要把在虚拟机下编译的文件传到IMX6ULL开发板上运行 设置好同一网段,可以互ping后,可以参考这篇博客,实现开发板与虚拟机的文件互传 IMX6ULL开发板与虚拟机互传文件 一、设置windows有线网卡 二、配置虚拟机双网卡(原本有一个NAT网卡

    2024年02月07日
    浏览(43)
  • 【IMX6ULL驱动开发学习】19.mmap内存映射

    mmap将一个文件或者其它对象映射进内存 ,使得应用层可以直接读取到驱动层的数据,无需通过copy_to_user函数 可以用于像LCD这样的外设, 需要读写大量数据的 一、应用层 mmap用法: 用open系统调用打开文件, 并返回描述符fd. 用mmap建立内存映射, 并返回映射首地址指针start. 对映

    2024年02月16日
    浏览(40)
  • 【IMX6ULL驱动开发学习】12.Linux驱动之设备树

    承接上一篇博客 【IMX6ULL驱动开发学习】11.驱动设计之面向对象_分层思想(学习设备树过渡部分) 代码获取: https://gitee.com/chenshao777/imx6-ull_-drivers 我后面将三个层合并了(实际上只有前两层),合并成一个dev_drv.c了,暂时没有加GPIO操作,只是个框架 合并前的代码在 11.butt

    2024年02月13日
    浏览(36)
  • 【IMX6ULL驱动开发学习】11.Linux之SPI驱动

    参考:驱动程序开发:SPI设备驱动_spi驱动_邓家文007的博客-CSDN博客 目录 一、SPI驱动简介 1.1 SPI架构概述 1.2 SPI适配器(控制器)数据结构 1.2 SPI设备数据结构 1.3 SIP设备驱动 1.4 接口函数  二、SPI驱动模板 SPI驱动框架和I2C驱动框架是十分相似的,不同的是因为SPI是通过片选引

    2024年02月11日
    浏览(41)
  • iMX6ULL驱动开发 | 让imx6ull开发板支持usb接口FC游戏手柄

    手边有一闲置的linux开发板iMX6ULL一直在吃灰,不用来搞点事情,总觉得对不住它。业余打发时间就玩起来吧,总比刷某音强。从某多多上买来一个usb接口的游戏手柄,让开发板支持以下它,后续就可以接着在上面玩童年经典游戏啦。  我使用的是正点原子的I.MX6U-ALPHA 开发板,

    2024年02月14日
    浏览(45)
  • 【IMX6ULL驱动开发学习】12.Linux SPI驱动实战:DAC驱动设计流程

    基础回顾: 【IMX6ULL驱动开发学习】10.Linux I2C驱动实战:AT24C02驱动设计流程_阿龙还在写代码的博客-CSDN博客 【IMX6ULL驱动开发学习】11.Linux之SPI驱动_阿龙还在写代码的博客-CSDN博客 查看芯片手册,有两种DAC数据格式,12位和16位,这里选用16位数据(2字节)编写驱动。  重点在

    2024年02月11日
    浏览(43)
  • 【IMX6ULL驱动开发学习】11.驱动设计之面向对象_分层思想(学习设备树过渡部分)

    一个 可移植性好 的驱动程序,应该有三个部分组成 1、驱动框架程序(xxx_drv.c) — 对接应用层的 open read write 函数,不做GPIO具体操作 2、硬件操作程序(xxx_chip_gpio.c)— 执行具体的GPIO操作,初始化、读写 3、硬件资源定义程序(xxx_board.c,这在之后就过渡成了设备树)— 为

    2024年02月11日
    浏览(34)
  • 【IMX6ULL驱动开发学习】14.Linux驱动开发 - GPIO中断(设备树 + GPIO子系统)

    代码自取 【14.key_tree_pinctrl_gpios_interrupt】: https://gitee.com/chenshao777/imx6-ull_-drivers 主要接口函数: 1. of_gpio_count (获得GPIO的数量) 2. kzalloc (向内核申请空间) 3. of_get_gpio (获取GPIO子系统标号) 4. gpio_to_irq (根据GPIO子系统标号得到软件中断号) 5. request_irq (根据软件中断号

    2024年02月12日
    浏览(40)
  • 【IMX6ULL驱动开发学习】10.设置uboot使用网络加载zImage和dtb

    首先根据这篇博客,保证自己的开发板与Ubuntu主机处于同一个网段,并且可以ping通 【IMX6ULL驱动开发学习】03.设置IMX6ULL开发板与虚拟机在同一网段 1. 在uboot中设置网络 首先启动自己的板子进入Linux系统,使用 ifconfig 命令或者 ifconfig -a 命令查看自己网卡的地址 我的网卡地址是

    2024年02月11日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包