k8s 驱逐eviction机制源码分析

这篇具有很好参考价值的文章主要介绍了k8s 驱逐eviction机制源码分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原理部分

1. 驱逐概念介绍
kubelet会定期监控node的内存,磁盘,文件系统等资源,当达到指定的阈值后,就会先尝试回收node级别的资源,比如当磁盘资源不足时会删除不同的image,如果仍然在阈值之上就会开始驱逐pod来回收资源。

2. 驱逐信号
kubelet定义了如下的驱逐信号,当驱逐信号达到了驱逐阈值执行驱逐流程
eviction manager: failed to get summary stats
3. 驱逐阈值
驱逐阈值用来指定当驱逐信号达到某个阈值后执行驱逐流程,格式如下:[eviction-signal][operator][quantity],其中eviction-signa为上面定义的驱逐信号,operator为操作符,比如小于等,quantity为指定阈值数据,可以为数字,也可以为百分比。
比如一个node有10G内存,如果期望当可用内存小于1G触发驱逐,可以定义阈值如下:memory.available<10%或者memory.available<1Gi

a. 软驱逐阈值
软驱逐阈值会指定一个grace period时间,只有达到阈值的时间超过了grace period才会执行驱逐流程。
有如下三个相关参数:
–eviction-soft: 指定驱逐阈值集合,比如memory.available<1.5Gi
–eviction-soft-grace-period:指定驱逐grace period时间集合,比如memory.available=1m30s
–eviction-max-pod-grace-period: 指定pod优雅退出时间,要和上面的–eviction-soft-grace-period区分开,–eviction-soft-grace-period指的是
达到阈值持续多久后才执行驱逐流程,而–eviction-max-pod-grace-period指的是驱逐pod后,pod的退出时间

b. 硬驱逐阈值
硬驱逐阈值只要达到了阈值就会执行驱逐流程,有如下参数
–eviction-hard: 指定驱逐阈值集合

如果不指定–eviction-hard,则使用如下默认值

//pkg/kubelet/apis/config/v1beta1/default_linux.go
// DefaultEvictionHard includes default options for hard eviction.
var DefaultEvictionHard = map[string]string{
	"memory.available":  "100Mi",
	"nodefs.available":  "10%",
	"nodefs.inodesFree": "5%",
	"imagefs.available": "15%",
}

驱逐的这些参数都可以在KubeletConfiguration文件中指定,只需要指定驱逐信号和对应的数值即可,操作符默认为小于,具体可参考官网

4. node健康状况
当达到软驱逐(不用等到grace period)或者硬驱逐阈值后,kubelet就会向api-server报告node的健康状况,反应出node的压力。

驱逐信号和node健康状况的关系如下表
eviction manager: failed to get summary stats

有些情况下,node健康状况可能会在软阈值上下波动,时而健康时而有压力,导致错误的驱逐决定。为了防止这种情况,可以使用参数–eviction-pressure-transition-period来控制node健康状况至少多久变化一次,默认值为5分钟

5. 驱逐pod选择
如果kubelet回收node级别的资源后仍然在阈值之上,则需要驱逐用户创建的pod。影响选择pod进行驱逐的因素如下:
a. 是否pod的资源使用超过了请求值
b. pod的优先级
c. pod的资源使用值和请求值的比例

根据上面三个因素,kubelet排序后进行驱逐pod的顺序如下:
a. 资源使用值超过了请求值的BestEffort和Burstable级别的pod。根据他们的pod优先级和超出请求值的多少进行驱逐
b. 资源使用值小于请求值的Guaranteed和Burstable级别的pod。根据他们的pod优先级进行驱逐

6. 最小回收资源
有些情况下,驱逐pod只能回收很少的一部分资源,可能导致kubelet频繁的执行达到阈值/进行驱逐的过程,为了防止这种情况,可以使用参数–eviction-minimum-reclaim为每种资源配置最小回收数值,当kubelet执行驱逐时,回收的资源会额外加上–eviction-minimum-reclaim指定的值。默认值为0

举例如下,当nodefs.available达到驱逐阈值后,kubelet开始驱逐回收资源直到可用资源达到1G,此时还会继续回收直到达到1.5G才会停止

apiVersion: kubelet.config.k8s.io/v1beta1
kind: KubeletConfiguration
evictionHard:
  memory.available: "500Mi"
  nodefs.available: "1Gi"
  imagefs.available: "100Gi"
evictionMinimumReclaim:
  memory.available: "0Mi"
  nodefs.available: "500Mi"
  imagefs.available: "2Gi"

7. KernelMemcgNotification
kubelet会启动协程周期检查是否达到驱逐阈值,如果有个很重要的pod内存使用增长很快的话,即使达到内存阈值了,kubelet也可能不能及时发现,最终oomkill掉此pod,如果kubelet能及时发现,就能驱逐其他低优先级的pod释放资源给这个高优先级的pod使用。
此时可以使用参数–kernel-memcg-notification使能memcg机制,kubelet会使用epoll监听,当达到阈值后,kubelet能很快得到通知,及时执行驱逐流程。

源码分析

1. 解析驱逐阈值配置
KubeletConfiguration文件中的驱逐阈值相关配置最终会保存到如下结构体中,Thresholds用来保存软驱逐阈值及其grace period,硬驱逐阈值。

// Config holds information about how eviction is configured.
type Config struct {
	// PressureTransitionPeriod is duration the kubelet has to wait before transitioning out of a pressure condition.
	PressureTransitionPeriod time.Duration
	// Maximum allowed grace period (in seconds) to use when terminating pods in response to a soft eviction threshold being met.
	MaxPodGracePeriodSeconds int64
	// Thresholds define the set of conditions monitored to trigger eviction.
	Thresholds []evictionapi.Threshold
	// KernelMemcgNotification if true will integrate with the kernel memcg notification to determine if memory thresholds are crossed.
	KernelMemcgNotification bool
	// PodCgroupRoot is the cgroup which contains all pods.
	PodCgroupRoot string
}

// Threshold defines a metric for when eviction should occur.
type Threshold struct {
	// Signal defines the entity that was measured.
	Signal Signal
	// Operator represents a relationship of a signal to a value.
	Operator ThresholdOperator
	// Value is the threshold the resource is evaluated against.
	Value ThresholdValue
	// GracePeriod represents the amount of time that a threshold must be met before eviction is triggered.
	GracePeriod time.Duration
	// MinReclaim represents the minimum amount of resource to reclaim if the threshold is met.
	MinReclaim *ThresholdValue
}

调用ParseThresholdConfig解析用户配置

//pkg/kubelet/kubelet.go
func NewMainKubelet(...)
	thresholds, err := eviction.ParseThresholdConfig(enforceNodeAllocatable, kubeCfg.EvictionHard, kubeCfg.EvictionSoft, kubeCfg.EvictionSoftGracePeriod, kubeCfg.EvictionMinimumReclaim)

	evictionConfig := eviction.Config{
		PressureTransitionPeriod: kubeCfg.EvictionPressureTransitionPeriod.Duration,
		MaxPodGracePeriodSeconds: int64(kubeCfg.EvictionMaxPodGracePeriod),
		Thresholds:               thresholds,
		KernelMemcgNotification:  kernelMemcgNotification,
		PodCgroupRoot:            kubeDeps.ContainerManager.GetPodCgroupRoot(),
	}

2. 创建evictionManager
调用eviction.NewManager创建evictionManager,klet.resourceAnalyzer用来获取node和pod的统计信息,evictionConfig为用户配置的驱逐阈值,killPodNow用来kill pod

//pkg/kubelet/kubelet.go
func NewMainKubelet(...)
	// setup eviction manager
	evictionManager, evictionAdmitHandler := eviction.NewManager(klet.resourceAnalyzer, evictionConfig, killPodNow(klet.podWorkers, kubeDeps.Recorder), klet.podManager.GetMirrorPodByPod, klet.imageManager, klet.containerGC, kubeDeps.Recorder, nodeRef, klet.clock)

	klet.evictionManager = evictionManager
	//将evictionManager添加到admitHandlers,创建pod时会调用evictionManager.Admit如果node有资源压力则拒绝pod运行在此node上
	klet.admitHandlers.AddPodAdmitHandler(evictionAdmitHandler)

3. 启动evictionManager
调用evictionManager的start函数启动驱逐管理,kl.GetActivePods用来获取运行在本node上的active pod,kl.podResourcesAreReclaimed用来确认pod的资源是否完全释放,evictionMonitoringPeriod为没有驱逐pod时的sleep时间

// Period for performing eviction monitoring.
// ensure this is kept in sync with internal cadvisor housekeeping.
evictionMonitoringPeriod = time.Second * 10

func initializeRuntimeDependentModules(...)
	// eviction manager must start after cadvisor because it needs to know if the container runtime has a dedicated imagefs
	kl.evictionManager.Start(kl.StatsProvider, kl.GetActivePods, kl.podResourcesAreReclaimed, evictionMonitoringPeriod)

如果指定了–kernel-memcg-notification,则启动实时驱逐,同时也会创建协程启动轮训驱逐

//pkg/kubelet/eviction/eviction_manager.go
// Start starts the control loop to observe and response to low compute resources.
func (m *managerImpl) Start(diskInfoProvider DiskInfoProvider, podFunc ActivePodsFunc, podCleanedUpFunc PodCleanedUpFunc, monitoringInterval time.Duration) {
	thresholdHandler := func(message string) {
		klog.InfoS(message)
		m.synchronize(diskInfoProvider, podFunc)
	}
	//实时驱逐。如果指定了--kernel-memcg-notification,则使能memcg机制,如果达到指定的阈值,就能很快调用synchronize
	if m.config.KernelMemcgNotification {
		for _, threshold := range m.config.Thresholds {
			if threshold.Signal == evictionapi.SignalMemoryAvailable || threshold.Signal == evictionapi.SignalAllocatableMemoryAvailable {
				notifier, err := NewMemoryThresholdNotifier(threshold, m.config.PodCgroupRoot, &CgroupNotifierFactory{}, thresholdHandler)
				if err != nil {
					klog.InfoS("Eviction manager: failed to create memory threshold notifier", "err", err)
				} else {
					go notifier.Start()
					m.thresholdNotifiers = append(m.thresholdNotifiers, notifier)
				}
			}
		}
	}
	
	//轮训驱逐
	// start the eviction manager monitoring
	go func() {
		for {
			//如果synchronize返回值不为空,说明有pod被驱逐了,则调用waitForPodsCleanup等待pod的资源被释放
			if evictedPods := m.synchronize(diskInfoProvider, podFunc); evictedPods != nil {
				klog.InfoS("Eviction manager: pods evicted, waiting for pod to be cleaned up", "pods", format.Pods(evictedPods))
				m.waitForPodsCleanup(podCleanedUpFunc, evictedPods)
			} else {//否则没有pod被驱逐时,需要sleep 10s
				time.Sleep(monitoringInterval)
			}
		}
	}()
}

waitForPodsCleanup堵塞等待pod资源被回收,直到成功或者超时

func (m *managerImpl) waitForPodsCleanup(podCleanedUpFunc PodCleanedUpFunc, pods []*v1.Pod) {
	//最多等待30s
	timeout := m.clock.NewTimer(podCleanupTimeout)
	defer timeout.Stop()
	//每秒执行一次
	ticker := m.clock.NewTicker(podCleanupPollFreq)
	defer ticker.Stop()
	for {
		select {
		case <-timeout.C():
			klog.InfoS("Eviction manager: timed out waiting for pods to be cleaned up", "pods", format.Pods(pods))
			return
		case <-ticker.C():
			for i, pod := range pods {
				//podCleanedUpFunc为pkg/kubelet/kubelet_pods.go:podResourcesAreReclaimed,用来判断pod的资源是否已经被回收,
				//如果仍然被回收则返回false,跳出循环等待下次
				if !podCleanedUpFunc(pod) {
					break
				}
				if i == len(pods)-1 {
					klog.InfoS("Eviction manager: pods successfully cleaned up", "pods", format.Pods(pods))
					return
				}
			}
		}
	}
}

synchronize为evictionManager的核心函数,实时驱逐和轮训驱逐都会调用它

// synchronize is the main control loop that enforces eviction thresholds.
// Returns the pod that was killed, or nil if no pod was killed.
func (m *managerImpl) synchronize(diskInfoProvider DiskInfoProvider, podFunc ActivePodsFunc) []*v1.Pod {
	// if we have nothing to do, just return
	thresholds := m.config.Thresholds
	//如果配置的驱逐阈值集合为空,则返回。因为有默认值的存在,肯定不会为空
	if len(thresholds) == 0 && !utilfeature.DefaultFeatureGate.Enabled(features.LocalStorageCapacityIsolation) {
		return nil
	}

	klog.V(3).InfoS("Eviction manager: synchronize housekeeping")
	// build the ranking functions (if not yet known)
	// TODO: have a function in cadvisor that lets us know if global housekeeping has completed
	if m.dedicatedImageFs == nil {
		hasImageFs, ok := diskInfoProvider.HasDedicatedImageFs()
		if ok != nil {
			return nil
		}
		m.dedicatedImageFs = &hasImageFs
		//建立驱逐信号到排序函数的映射,比如对于SignalMemoryAvailable,使用rankMemoryPressure进行排序
		m.signalToRankFunc = buildSignalToRankFunc(hasImageFs)
		//建立驱逐信号到node级别资源回收函数的映射
		m.signalToNodeReclaimFuncs = buildSignalToNodeReclaimFuncs(m.imageGC, m.containerGC, hasImageFs)
	}

	//podFunc()为kl.GetActivePods用来获取运行在本node上的active pod
	activePods := podFunc()
	updateStats := true
	//调用summaryProviderImpl.Get获取node和pod统计信息
	summary, err := m.summaryProvider.Get(updateStats)
	if err != nil {
		klog.ErrorS(err, "Eviction manager: failed to get summary stats")
		return nil
	}

	//notifier相关的,暂时忽略
	if m.clock.Since(m.thresholdsLastUpdated) > notifierRefreshInterval {
		m.thresholdsLastUpdated = m.clock.Now()
		for _, notifier := range m.thresholdNotifiers {
			if err := notifier.UpdateThreshold(summary); err != nil {
				klog.InfoS("Eviction manager: failed to update notifier", "notifier", notifier.Description(), "err", err)
			}
		}
	}

	//将获取的node和pod统计信息summary转换到observations,此为驱逐信号到signalObservation的map,signalObservation保存了驱逐信号
	//的总容量,可用值和获取统计时的时间
	// make observations and get a function to derive pod usage stats relative to those observations.
	observations, statsFunc := makeSignalObservations(summary)
	debugLogObservations("observations", observations)

	//比较observations中的资源信息和配置的驱逐阈值thresholds,将达到阈值的thresholds返回,
	//比如配置的驱逐阈值为memory.available: "500Mi"和nodefs.available: "1Gi",而observations中内存可用为400Mi,
	//可用nodefs为2Gi,则返回memory.available相关信息
	// determine the set of thresholds met independent of grace period
	thresholds = thresholdsMet(thresholds, observations, false)
	debugLogThresholdsWithObservation("thresholds - ignoring grace period", thresholds, observations)

	//thresholdsMet记录的是上次达到驱逐阈值的信号
	// determine the set of thresholds previously met that have not yet satisfied the associated min-reclaim
	if len(m.thresholdsMet) > 0 {
		//经过上次的驱逐流程后,可能已经成功回收资源,对上次达到驱逐阈值的信号再次进行判断是否降低到阈值之下,
		//如果没降低到阈值之下,需要将本次的thresholds和上次的m.thresholdsMet进行合并。
		//还有一种情况,对于软驱逐来说,第一次达到阈值后可能还没超过grace periods,则保存到m.thresholdsMet,下次走到这里时进行合并,
		//执行后续流程,如果仍然没超过grace periods则继续,直到超过grace periods指定的时间
		thresholdsNotYetResolved := thresholdsMet(m.thresholdsMet, observations, true)
		thresholds = mergeThresholds(thresholds, thresholdsNotYetResolved)
	}
	debugLogThresholdsWithObservation("thresholds - reclaim not satisfied", thresholds, observations)

	//记录驱逐信号第一次达到阈值的时间,目的是为了计算是否超过grace periods指定的时间
	//thresholds是本次发现达到阈值的驱逐信号,m.thresholdsFirstObservedAt保存的驱逐信号是第一次
	//达到阈值的时间
	// track when a threshold was first observed
	now := m.clock.Now()
	thresholdsFirstObservedAt := thresholdsFirstObservedAt(thresholds, m.thresholdsFirstObservedAt, now)

	//根据达到阈值的驱逐信号返回对应的node健康状况,比如达到内存可用阈值了,则返回NodeMemoryPressure
	// the set of node conditions that are triggered by currently observed thresholds
	nodeConditions := nodeConditions(thresholds)
	if len(nodeConditions) > 0 {
		klog.V(3).InfoS("Eviction manager: node conditions - observed", "nodeCondition", nodeConditions)
	}

	//记录不同node健康状况上次出问题的时间,目的是为了计算是否超过了PressureTransitionPeriod指定的时间,防止node健康状况出现波动
	// track when a node condition was last observed
	nodeConditionsLastObservedAt := nodeConditionsLastObservedAt(nodeConditions, m.nodeConditionsLastObservedAt, now)

	//只要记录的node健康状况出问题的时间在PressureTransitionPeriod指定的时间内,则返回true,即认为node健康状况还是有问题,
	//比如PressureTransitionPeriod为5分钟,在第一分钟时可用内存信号达到了内存阈值,设置node健康状况为NodeMemoryPressure,
	//第二分钟即使可用内存信号降到了内存阈值之下,也不会将NodeMemoryPressure删除,而是等到过了5分钟之后,如果可用内存信号仍然
	//在内存阈值之下,才会删除NodeMemoryPressure,即需要保持NodeMemoryPressure状态持续至少5分钟,不过这段时间内内存如何变化。
	// node conditions report true if it has been observed within the transition period window
	nodeConditions = nodeConditionsObservedSince(nodeConditionsLastObservedAt, m.config.PressureTransitionPeriod, now)
	if len(nodeConditions) > 0 {
		klog.V(3).InfoS("Eviction manager: node conditions - transition period not met", "nodeCondition", nodeConditions)
	}

	//返回超过grace periods的驱逐信号,主要是针对软驱逐来说,硬驱逐每次都会返回
	// determine the set of thresholds we need to drive eviction behavior (i.e. all grace periods are met)
	thresholds = thresholdsMetGracePeriod(thresholdsFirstObservedAt, now)
	debugLogThresholdsWithObservation("thresholds - grace periods satisfied", thresholds, observations)

	//保存重要的变量
	// update internal state
	m.Lock()
	m.nodeConditions = nodeConditions
	m.thresholdsFirstObservedAt = thresholdsFirstObservedAt
	m.nodeConditionsLastObservedAt = nodeConditionsLastObservedAt
	m.thresholdsMet = thresholds

	// determine the set of thresholds whose stats have been updated since the last sync
	thresholds = thresholdsUpdatedStats(thresholds, observations, m.lastObservations)
	debugLogThresholdsWithObservation("thresholds - updated stats", thresholds, observations)

	m.lastObservations = observations
	m.Unlock()

	// evict pods if there is a resource usage violation from local volume temporary storage
	// If eviction happens in localStorageEviction function, skip the rest of eviction action
	if utilfeature.DefaultFeatureGate.Enabled(features.LocalStorageCapacityIsolation) {
		if evictedPods := m.localStorageEviction(activePods, statsFunc); len(evictedPods) > 0 {
			return evictedPods
		}
	}

	//如果为0,说明没有驱逐信号达到阈值,即没有资源压力,返回即可
	if len(thresholds) == 0 {
		klog.V(3).InfoS("Eviction manager: no resources are starved")
		return nil
	}

	//将驱逐信号进行排序,将内存驱逐信号排在前面
	// rank the thresholds by eviction priority
	sort.Sort(byEvictionPriority(thresholds))
	//获取第一个驱逐信号,上面刚排序过,最新驱逐的是内存信号
	thresholdToReclaim, resourceToReclaim, foundAny := getReclaimableThreshold(thresholds)
	if !foundAny {
		return nil
	}
	klog.InfoS("Eviction manager: attempting to reclaim", "resourceName", resourceToReclaim)

	// record an event about the resources we are now attempting to reclaim via eviction
	m.recorder.Eventf(m.nodeRef, v1.EventTypeWarning, "EvictionThresholdMet", "Attempting to reclaim %s", resourceToReclaim)

	//首先查看是否有node层级的资源可回收,回收后,再次m.summaryProvider.Get获取node和pod统计信息,和m.config.Thresholds进行比较,
	//如果没有达到阈值的驱逐信号,则返回true,说明node层级的资源回收后,已经没有资源压力。
	//内存驱逐信号不属于node层级资源
	// check if there are node-level resources we can reclaim to reduce pressure before evicting end-user pods.
	if m.reclaimNodeLevelResources(thresholdToReclaim.Signal, resourceToReclaim) {
		klog.InfoS("Eviction manager: able to reduce resource pressure without evicting pods.", "resourceName", resourceToReclaim)
		return nil
	}

	klog.InfoS("Eviction manager: must evict pod(s) to reclaim", "resourceName", resourceToReclaim)

	//根据驱逐信号获取排序函数,比如内存驱逐信号对应的排序函数为rankMemoryPressure
	// rank the pods for eviction
	rank, ok := m.signalToRankFunc[thresholdToReclaim.Signal]
	if !ok {
		klog.ErrorS(nil, "Eviction manager: no ranking function for signal", "threshold", thresholdToReclaim.Signal)
		return nil
	}

	//没有active的pod,返回
	// the only candidates viable for eviction are those pods that had anything running.
	if len(activePods) == 0 {
		klog.ErrorS(nil, "Eviction manager: eviction thresholds have been met, but no pods are active to evict")
		return nil
	}

	//对activePods进行排序
	// rank the running pods for eviction for the specified resource
	rank(activePods, statsFunc)

	klog.InfoS("Eviction manager: pods ranked for eviction", "pods", format.Pods(activePods))

	//record age of metrics for met thresholds that we are using for evictions.
	for _, t := range thresholds {
		timeObserved := observations[t.Signal].time
		if !timeObserved.IsZero() {
			metrics.EvictionStatsAge.WithLabelValues(string(t.Signal)).Observe(metrics.SinceInSeconds(timeObserved.Time))
		}
	}

	//遍历activePods开始驱逐,每次最多驱逐一个pod。为什么还要循环呢?因为有些pod属于Critical pod,这些pod不能驱逐
	// we kill at most a single pod during each eviction interval
	for i := range activePods {
		pod := activePods[i]
		gracePeriodOverride := int64(0)
		//软驱逐设置gracePeriodOverride为MaxPodGracePeriodSeconds,
		//硬驱逐置gracePeriodOverride为0
		if !isHardEvictionThreshold(thresholdToReclaim) {
			gracePeriodOverride = m.config.MaxPodGracePeriodSeconds
		}
		message, annotations := evictionMessage(resourceToReclaim, pod, statsFunc)
		//执行驱逐,如果evictPod返回nil说明pod为Critical pod,返回非nil说明对pod进行驱逐了,但不会管驱逐是否成功
		if m.evictPod(pod, gracePeriodOverride, message, annotations) {
			metrics.Evictions.WithLabelValues(string(thresholdToReclaim.Signal)).Inc()
			return []*v1.Pod{pod}
		}
	}
	klog.InfoS("Eviction manager: unable to evict any pods from the node")
	return nil
}

evictPod对pod执行驱逐,如果pod为Critical pod则直接返回nil

func (m *managerImpl) evictPod(pod *v1.Pod, gracePeriodOverride int64, evictMsg string, annotations map[string]string) bool {
	// If the pod is marked as critical and static, and support for critical pod annotations is enabled,
	// do not evict such pods. Static pods are not re-admitted after evictions.
	// https://github.com/kubernetes/kubernetes/issues/40573 has more details.
	if kubelettypes.IsCriticalPod(pod) {
		klog.ErrorS(nil, "Eviction manager: cannot evict a critical pod", "pod", klog.KObj(pod))
		return false
	}
	// record that we are evicting the pod
	m.recorder.AnnotatedEventf(pod, annotations, v1.EventTypeWarning, Reason, evictMsg)
	// this is a blocking call and should only return when the pod and its containers are killed.
	klog.V(3).InfoS("Evicting pod", "pod", klog.KObj(pod), "podUID", pod.UID, "message", evictMsg)
	//killPodFunc为pkg/kubelet/pod_workers.go:killPodNow
	err := m.killPodFunc(pod, true, &gracePeriodOverride, func(status *v1.PodStatus) {
		status.Phase = v1.PodFailed
		status.Reason = Reason
		status.Message = evictMsg
	})
	if err != nil {
		klog.ErrorS(err, "Eviction manager: pod failed to evict", "pod", klog.KObj(pod))
	} else {
		klog.InfoS("Eviction manager: pod is evicted successfully", "pod", klog.KObj(pod))
	}
	return true
}

Critical pod的判断方法

// IsCriticalPod returns true if pod's priority is greater than or equal to SystemCriticalPriority.
func IsCriticalPod(pod *v1.Pod) bool {
	//pod的注释kubernetes.io/config.source不为api,即不是从apiserver获取的pod都为静态pod
	if IsStaticPod(pod) {
		return true
	}
	//pod的注释kubernetes.io/config.mirror不为空的pod为镜像pod
	if IsMirrorPod(pod) {
		return true
	}
	//pod的优先级不为空,且优先级大于 2*1000000000
	if pod.Spec.Priority != nil && IsCriticalPodBasedOnPriority(*pod.Spec.Priority) {
		return true
	}
	return false
}

killPodNow调用pod_workers的UpdatePod kill pod,此函数为堵塞调用,或者返回成功,或者等timeout超时

//pkg/kubelet/pod_workers.go
// killPodNow returns a KillPodFunc that can be used to kill a pod.
// It is intended to be injected into other modules that need to kill a pod.
func killPodNow(podWorkers PodWorkers, recorder record.EventRecorder) eviction.KillPodFunc {
	return func(pod *v1.Pod, isEvicted bool, gracePeriodOverride *int64, statusFn func(*v1.PodStatus)) error {
		// determine the grace period to use when killing the pod
		gracePeriod := int64(0)
		if gracePeriodOverride != nil {
			gracePeriod = *gracePeriodOverride
		} else if pod.Spec.TerminationGracePeriodSeconds != nil {
			gracePeriod = *pod.Spec.TerminationGracePeriodSeconds
		}

		// we timeout and return an error if we don't get a callback within a reasonable time.
		// the default timeout is relative to the grace period (we settle on 10s to wait for kubelet->runtime traffic to complete in sigkill)
		timeout := int64(gracePeriod + (gracePeriod / 2))
		minTimeout := int64(10)
		if timeout < minTimeout {
			timeout = minTimeout
		}
		timeoutDuration := time.Duration(timeout) * time.Second

		// open a channel we block against until we get a result
		ch := make(chan struct{}, 1)
		podWorkers.UpdatePod(UpdatePodOptions{
			Pod:        pod,
			UpdateType: kubetypes.SyncPodKill, //更新类型为kill
			KillPodOptions: &KillPodOptions{
				CompletedCh:                              ch,
				Evict:                                    isEvicted,
				PodStatusFunc:                            statusFn,
				PodTerminationGracePeriodSecondsOverride: gracePeriodOverride,
			},
		})

		// wait for either a response, or a timeout
		select {
		//堵塞channel等待,kill成功后会close此channel,这里返回nil
		case <-ch:
			return nil
		case <-time.After(timeoutDuration): //超时了返回err
			recorder.Eventf(pod, v1.EventTypeWarning, events.ExceededGracePeriod, "Container runtime did not kill the pod within specified grace period.")
			return fmt.Errorf("timeout waiting to kill pod")
		}
	}
}

UpdatePod的调用链如下

UpdatePod-> managePodLoop -> syncTerminatingPod -> killPod -> containerRuntime.KillPod

4. nodeConditions的作用
有如下两个作用
a. 如果node健康状况出问题就会上报到kube-apiserver,代码如下

func (kl *Kubelet) defaultNodeStatusFuncs() []func(*v1.Node) error
	setters = append(setters,
		//上传MemoryPressure
		nodestatus.MemoryPressureCondition(kl.clock.Now, kl.evictionManager.IsUnderMemoryPressure, kl.recordNodeStatusEvent),
		//上传DiskPressure
		nodestatus.DiskPressureCondition(kl.clock.Now, kl.evictionManager.IsUnderDiskPressure, kl.recordNodeStatusEvent),
		//上传PIDPressure
		nodestatus.PIDPressureCondition(kl.clock.Now, kl.evictionManager.IsUnderPIDPressure, kl.recordNodeStatusEvent),
	)

如果m.nodeConditions包含NodeMemoryPressure说明有当前可用内存超过了内存驱逐信号的阈值

// IsUnderMemoryPressure returns true if the node is under memory pressure.
func (m *managerImpl) IsUnderMemoryPressure() bool {
	m.RLock()
	defer m.RUnlock()
	return hasNodeCondition(m.nodeConditions, v1.NodeMemoryPressure)
}

会有两个表现,一个是node污点增加了node.kubernetes.io/memory-pressure:NoSchedule,另一个是node的Conditions也能看到MemoryPressure,可使用kubectl describe node master查看

root@master:~# kubectl describe node master
...
Taints:             node.kubernetes.io/memory-pressure:NoSchedule
Unschedulable:      false
Lease:
  HolderIdentity:  master
  AcquireTime:     <unset>
  RenewTime:       Sat, 10 Dec 2022 10:23:38 +0000
Conditions:
  Type                 Status  LastHeartbeatTime                 LastTransitionTime                Reason                         Message
  ----                 ------  -----------------                 ------------------                ------                         -------
  MemoryPressure       True    Sat, 10 Dec 2022 10:22:06 +0000   Sat, 10 Dec 2022 10:22:06 +0000   KubeletHasInsufficientMemory   kubelet has insufficient memory available

node有了node.kubernetes.io/memory-pressure:NoSchedule污点后,还可能会影响新pod的调度,在Filter扩展点TaintToleration插件会检查污点

// Filter invoked at the filter extension point.
func (pl *TaintToleration) Filter(ctx context.Context, state *framework.CycleState, pod *v1.Pod, nodeInfo *framework.NodeInfo) *framework.Status {
	if nodeInfo == nil || nodeInfo.Node() == nil {
		return framework.AsStatus(fmt.Errorf("invalid nodeInfo"))
	}

	filterPredicate := func(t *v1.Taint) bool {
		// PodToleratesNodeTaints is only interested in NoSchedule and NoExecute taints.
		return t.Effect == v1.TaintEffectNoSchedule || t.Effect == v1.TaintEffectNoExecute
	}

	taint, isUntolerated := v1helper.FindMatchingUntoleratedTaint(nodeInfo.Node().Spec.Taints, pod.Spec.Tolerations, filterPredicate)
	if !isUntolerated {
		return nil
	}

	errReason := fmt.Sprintf("node(s) had taint {%s: %s}, that the pod didn't tolerate",
		taint.Key, taint.Value)
	return framework.NewStatus(framework.UnschedulableAndUnresolvable, errReason)
}

如果新创建的pod没有声明容忍memory-pressure污点,会有如下报错,导致pod调度失败

I1210 12:43:04.147715   92808 scheduler.go:351] "Unable to schedule pod; no fit; waiting" pod="default/nginx-demo3-574cdd99c7-lwk9x" err="0/2 nodes are available: 1 node(s) had untolerated taint {node.kubernetes.io/memory-pressure: }, 1 node(s) had untolerated taint {node.kubernetes.io/unreachable: }. preemption: 0/2 nodes are available: 2 Preemption is not helpful for scheduling."

b. 即使新建pod能调度成功,在目标node上也需要经过canAdmitPod检查后才能允许此pod运行在此node上,调用链如下
HandlePodAdditions -> canAdmitPod -> podAdmitHandler.Admit

evictionManager的Admit会检查node健康状态m.nodeConditions,如果为空说明没有资源压力,可直接返回true,如果是CriticalPod也返回true,如果只有内存压力,会根据pod的qos级别进行区分,如果不是besteffort的pod也返回true,是besteffort的pod如果可以容忍内存压力也可以,但如果不是内存压力就返回false,即pod不能运行在此node上

// Admit rejects a pod if its not safe to admit for node stability.
func (m *managerImpl) Admit(attrs *lifecycle.PodAdmitAttributes) lifecycle.PodAdmitResult {
	m.RLock()
	defer m.RUnlock()
	//node健康状态集合为空,说明没有资源压力,可直接返回true
	if len(m.nodeConditions) == 0 {
		return lifecycle.PodAdmitResult{Admit: true}
	}
	//CriticalPod也返回true
	// Admit Critical pods even under resource pressure since they are required for system stability.
	// https://github.com/kubernetes/kubernetes/issues/40573 has more details.
	if kubelettypes.IsCriticalPod(attrs.Pod) {
		return lifecycle.PodAdmitResult{Admit: true}
	}

	//有且只有内存压力
	// Conditions other than memory pressure reject all pods
	nodeOnlyHasMemoryPressureCondition := hasNodeCondition(m.nodeConditions, v1.NodeMemoryPressure) && len(m.nodeConditions) == 1
	if nodeOnlyHasMemoryPressureCondition {
		//获取pod的qos级别
		notBestEffort := v1.PodQOSBestEffort != v1qos.GetPodQOS(attrs.Pod)
		//非BestEffort的pod返回true
		if notBestEffort {
			return lifecycle.PodAdmitResult{Admit: true}
		}

		//如果能容忍内存压力也返回true
		// When node has memory pressure, check BestEffort Pod's toleration:
		// admit it if tolerates memory pressure taint, fail for other tolerations, e.g. DiskPressure.
		if v1helper.TolerationsTolerateTaint(attrs.Pod.Spec.Tolerations, &v1.Taint{
			Key:    v1.TaintNodeMemoryPressure,
			Effect: v1.TaintEffectNoSchedule,
		}) {
			return lifecycle.PodAdmitResult{Admit: true}
		}
	}

	//其他情况均返回false
	// reject pods when under memory pressure (if pod is best effort), or if under disk pressure.
	klog.InfoS("Failed to admit pod to node", "pod", klog.KObj(attrs.Pod), "nodeCondition", m.nodeConditions)
	return lifecycle.PodAdmitResult{
		Admit:   false,
		Reason:  Reason,
		Message: fmt.Sprintf(nodeConditionMessageFmt, m.nodeConditions),
	}
}

参考
https://kubernetes.io/docs/concepts/scheduling-eviction/node-pressure-eviction/#eviction-thresholds
https://github.com/kubernetes/design-proposals-archive/blob/main/node/kubelet-eviction.md文章来源地址https://www.toymoban.com/news/detail-660732.html

到了这里,关于k8s 驱逐eviction机制源码分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • k8s 维护node与驱逐pod

    1.维护node节点 设置节点状态为不可调度状态,执行以下命令后,节点状态会多出一个SchedulingDisabled的状态,即新建的pod不会往该节点上调度,本身存在node中的pod保持正常运行 kubectl cordon k8s-node01 kubectl get node 2.驱逐pod 在node节点设置为不可调度状态后,就可以开始驱逐本节点

    2024年02月06日
    浏览(52)
  • 云原生 | k8s批量删除Evicted/Terminating/Unknown Pods

    宿主机内存被docker占满导致,K8s集群pod处于Evicted 状态,清理内存后处理Evicted和Terminating状态的pod 1、在集群查询pod状态,发现大量pod处于Evicted和Terminating状态 2.使用kubectl中的强制删除命令 3.删除非正常的pod  

    2024年02月08日
    浏览(40)
  • flink集群与资源@k8s源码分析-集群

    本文是flink集群与资源@k8s源码分析系列的第二篇-集群 下面详细分析各用例 k8s集群支持session和application模式,job模式将会被废弃,本文分析session模式集群 Configuration作为配置容器,几乎所有的构建需要从配置类获取配置项,这里不显示关联关系 1. 用户命令行执行kubernates-ses

    2024年02月07日
    浏览(46)
  • flink集群与资源@k8s源码分析-运行时

    运行时提供了Flink作业运行过程依赖的基础执行环境,包含Dispatcher、ResourceManager、JobManager和TaskManager等核心组件,本节分析资源相关运行时组件构建和启动。 flink没有使用spring,缺少ioc的构建过程相当复杂,所有依赖手动关联和置入,为了共享组件,flink使用了很多中间持有

    2024年02月07日
    浏览(38)
  • 【k8s源码分析-Apiserver-2】kube-apiserver 结构概览以及主体部分源码分析

    Kubernetes 源码剖析(书籍) kube-apiserver的设计与实现 - 自记小屋 APIGroupInfo 记录 GVK 与 Storage 的对应关系 将 GVK 转换成,Restful HTTP Path 将 Storage 封装成 HTTP Handler 将上面两个形成映射,实现相关的路由处理 发起请求并处理的流程 发送请求:通过 GVK 对应的 Restful HTTP Path 发送请求

    2024年02月03日
    浏览(36)
  • flink集群与资源@k8s源码分析-资源III 声明式资源管理

    资源分析分3部分,资源请求,资源提供,声明式资源管理,本文是第三部分 声明式资源管理 检查资源需求/检查资源声明是flink 声明式资源管理 的核心方法 上面的资源场景分为两类, 提出资源需求 和 提供资源 , 检查资源请求/检查资源声明是交汇点,处理资源请求,该分

    2024年02月07日
    浏览(40)
  • k8s 使用cert-manager证书管理自签

    个人建议使用安装更快,比helm快,还要等待安装crd 查看你的证书 手动签发ssl自签证书 最后ingress 最后访问

    2024年01月22日
    浏览(74)
  • GPU虚拟化理解包含直通,k8s安装,GPU-manager

    vGPU,即真正意义上的GPU虚拟化方案,就是将一块GPU卡的计算能力进行切片,分成多个逻辑上虚拟的GPU,以vGPU为单位分配GPU的计算能力, 并将单块GPU卡分配给多台虚拟机使用,使得虚拟机能够运行3D软件、播放高清视频等,极大地提升了用户体验。真正实现了GPU资源的按需分

    2024年02月13日
    浏览(41)
  • k8s中GPU虚拟化工具gpu-manager的安装

    gpu-manager是腾讯的一个开源vGPU应用,具体原理就不介绍了,详见GPUManager虚拟化方案。 本文主要参照腾讯开源vgpu方案gpu-manager安装教程进行安装,并就安装时出现的问题,对其中的部分配置进行了更改,如果根据上述文章安装失败,可以参考本文来进行安装。 gpu-manager不提供

    2024年02月06日
    浏览(38)
  • k8s 安全机制

    安全机制 //机制说明 Kubernetes 作为一个分布式集群的管理工具,保证集群的安全性是其一个重要的任务。API Server 是集群内部各个组件通信的中介, 也是外部控制的入口。所以 Kubernetes 的安全机制基本就是围绕保护 API Server 来设计的。 比如 kubectl 如果想向 API Server 请求资源,

    2024年02月17日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包