【编织时空四:探究顺序表与链表的数据之旅】

这篇具有很好参考价值的文章主要介绍了【编织时空四:探究顺序表与链表的数据之旅】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本章重点

  • 链表的分类

  • 带头双向循环链表接口实现

  • 顺序表和链表的区别

  • 缓存利用率参考存储体系结构 以及 局部原理性。

一、链表的分类

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

实际中链表的结构非常多样,以下情况组合起来就有8种链表结构:

1. 单向或者双向

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

2. 带头或者不带头

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表3. 循环或者非循环 

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

虽然有这么多的链表的结构,但是我们实际中最常用还是两种结构:

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

  1. 无头单向非循环链表:结构简单,一般不会单独用来存数据。实际中更多是作为其他数据结构的子结构,如哈希桶、图的邻接表等等。另外这种结构在笔试面试中出现很多。
  2. 带头双向循环链表:结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都 是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带 来很多优势,实现反而简单了,后面我们代码实现了就知道了。

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

二、带头双向循环链表接口实现

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

1.申请结点:struct ListNode* BuyLTNode(LTDataType x)

动态申请结点,函数返回的是一个指针类型,用malloc开辟一个LTNode大小的空间,并用node指向这个空间,再判断是否为空,如为空就perror,显示错误信息。反之则把要存的数据x存到newnode指向的空间里面,把指针置为空。

// 申请结点
struct ListNode* BuyLTNode(LTDataType x)
{
	struct ListNode* node = (struct ListNode*)malloc(sizeof(struct ListNode));
	if (node == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}

	node->data = x;
	node->prev = node;
	node->next = node;

	return node;
}

2.初始化:struct ListNode* LTInit()

// 初始化
void LTInit(struct ListNode* phead)
{
	phead = BuyLTNode(-1);
	phead->prev = phead;
	phead->next = phead;
}

我们首先看看这个初始化有什么问题嘛?

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

phead为空指针,说明我们的初始化没有效果,这是因为phead是函数里面的形参,出了作用域就销毁,plsit仍然是空指针,形参的改变不能影响实参,但是我们可以通过返回phead的地址解决问题。

单链表开始是没有节点的,可以定义一个指向空指针的结点指针,但是此链表不同,需要在初始化函数中创建个头结点,它不用存储有效数据。因为链表是循环的,在最开始需要让头结点的next和pre指向头结点自己。

因为其他函数也不需要用二级指针(因为头结点指针是不会变的,变的是next和pre,改变的是结构体,只需要用结构体针即可,也就是一级指针)为了保持一致此函数也不用二级指针,把返回类型设置为结构体指针类型。

// 初始化 - 改变实参plsit
struct ListNode* LTInit()
{
	struct ListNode* phead = BuyLTNode(-1);
	phead->prev = phead;
	phead->next = phead;

	return phead;
}

3.尾插:void LTPushBack(struct ListNode* phead, LTDataType x)

尾插首先要找到尾结点,再将要尾插的结点与尾结点和带头结点链接,由于是带头结点,所以此处不需要关注头结点为空的问题。

// 尾插
void LTPushBack(struct ListNode* phead, LTDataType x)
{
	assert(phead);

	struct ListNode* tail = phead->prev;
	struct ListNode* newnode = BuyLTNode(x);

	newnode->prev = tail;
	tail->next = newnode;

	newnode->next = phead;
	phead->prev = newnode;

}

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

4.尾删:void LTPopBack(struct ListNode* phead)

尾删只需要找到尾结点的前驱结点,再把带头结点和前驱结点链接,释放尾结点就完成了尾删。

不过这里需要处理一下只有带头结点的删除,此时真正的链表为空,此时就不能删除了。

// 尾删
void LTPopBack(struct ListNode* phead)
{
	assert(phead);

	assert(phead->next != phead);//链表为空

	struct ListNode* tail = phead->prev;
	struct ListNode* tailPrev = tail->prev;
	
	free(tail);
	tailPrev->next = phead;
	phead->next = tailPrev;
	
}

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

5.头插:void LTPushFront(struct ListNode* phead, LTDataType x)

头插需要注意顺序,如果先让phead和newnode链接,那么就找不到phead结点的后续结点,这样就无法让newnode和phead结点的后续结点链接。

// 头插
void LTPushFront(struct ListNode* phead, LTDataType x)
{
	assert(phead);
	
	struct ListNode* newnode = BuyLTNode(x);

	//顺序不可颠倒
	newnode->next = phead->next;
	phead->next->prev = newnode;

	phead->next = newnode;
	newnode->prev = phead;
}

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

6.头删:void LTPopFront(struct ListNode* phead)

// 头删
void LTPopFront(struct ListNode* phead)
{
	assert(phead);

	assert(phead->next != phead);//链表为空

	struct ListNode* first = phead->next;
	struct ListNode* second = first->next;

	free(first);
	phead->next = second;
	second->prev = phead;
}

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

7.链表长度:int LTSize(struct ListNode* phead)

        求链表长度,先把头结点下一个结点存到cur中,再用while循环遍历终止条件是cur等于头结点,用size++记录长度,并更新cur,最后返回size,32位机器下是无符号整型size_t。
( 此类型可以提高代码的可移植性,有效性,可读性。此链表长度可能是字符型或者数组整型,他可以提供一种可移植方法来声明与系统中可寻址的内存区域一致的长度,而且被设计的足够大,能表示内存中任意对象的大小)

        注意这里求链表长度不需要求带头结点,我们有时也经常看到由于带头结点的数据没有使用,就有的书上会把该数据存储上链表的长度size=phead->data,然后插入数据phead->data++,删除phead->--,但是这有个限制,这种写法只适合int类型,如果我们写出char类型的数据,存储几个数据char就保存不了,char类型的phead->data一直++最后就会溢出,所以不建议这种写法。

// 链表长度
int LTSize(struct ListNode* phead)
{
	assert(phead);
	int size = 0;
	struct ListNode* cur = phead->next;

	while (cur != phead)
	{
		size++;
		cur = cur->next;
	}
	return size;
}

8.在pos的前面进行插入:void LTInsert(struct ListNode* pos, LTDataType x)

断言pos,不能为空,插入数据先申请一结点放到定义的newnode指针变量中,为了不用考虑插入顺序,先把pos前面的存到posPrev中,然后就可以随意链接:
posPrev指向新节点,新节点前驱指针指向posPrev,新节点指向pos,pos前驱指针指向新节点。

// 在pos的前面进行插入
void LTInsert(struct ListNode* pos, LTDataType x)
{
	assert(pos);

	struct ListNode* posPrev = pos->prev;
	struct ListNode* newnode = BuyLTNode(x);

	posPrev->next = newnode;
	newnode->prev = posPrev;

	newnode->next = pos;
	pos->prev = newnode;
}

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表9.删除pos位置的结点:void LTErase(struct ListNode* pos)

删除把pos位置之前的结点直接指向pos的下一个结点,把pos下一个结点的前驱指针指向pos之前的结点。

// 删除pos位置的结点
void LTErase(struct ListNode* pos)
{
	assert(pos);

	struct ListNode* posPrev = pos->prev;
	struct ListNode* posNext = pos->next;

	free(pos);

	posPrev->next = posNext;
	posNext->prev = posPrev;
}

 【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

10.双向链表查找:struct ListNode* ListFind(struct ListNode* phead, LTDataType x)

查找把头结点下一个结点存到cur,然后用while循环遍历,终止条件是cur等于头结点指针,如果cur等于x,直接返回cur指针,再更新cur,最后遍历完返回NULL,表示没有该数据。

// 双向链表查找
struct ListNode* ListFind(struct ListNode* phead, LTDataType x)
{
	assert(phead);
	struct ListNode* cur = phead->next;

	while (cur != phead)
	{
		if (cur->data == x)
			return cur;
		cur = cur->next;
	}
	return NULL;
}

11.销毁:void LTDestroy(struct ListNode* phead)

释放链表从头开始释放,把头结点下一个结点存到cur中,再用用while循环,终止条件是cur不等于头指针,在里面把cur下一个指针存到next中,释放掉cur,再把next更新为cur。最后头结点也是申请的,也得释放。

这里需要注意,由于形参的改变不会影响实参,我们在函数内部将phead置空是无意义的,我们需要在函数外面调用LTDestroy函数后,需要手动将phead置空。

// 销毁
void LTDestroy(struct ListNode* phead)
{
	assert(phead);
	
	struct ListNode* cur = phead->next;

	while (cur != phead)
	{
		struct ListNode* next = cur->next;
		free(cur);

		cur = next;
	}
	free(phead);
}

12.打印:void LTPrint(struct ListNode* phead)

打印链表,先断言phead,它不能为空,再把头结点下个地址存到cur中,用while循环去遍历,终止条件是等于头指针停止,因为他是循环的,并更新cur。

// 打印
void LTPrint(struct ListNode* phead)
{
	assert(phead);
	printf("phead<=>");
	struct ListNode* cur = phead->next;

	while (cur != phead)
	{
		printf("%d<=>", cur->data);
		cur = cur->next;
	}
}

三、顺序表和链表的区别

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

不同点 顺序表 链表
存储空间上 物理上一定连续 逻辑上连续,但物理上不一定 连续
随机访问 支持O(1) 不支持:O(N)
任意位置插入或者删除 元素 可能需要搬移元素,效率低 O(N) 只需修改指针指向
插入 动态顺序表,空间不够时需要 扩容 没有容量的概念
应用场景 元素高效存储+频繁访问 任意位置插入和删除频繁
缓存利用率

四、缓存利用率参考存储体系结构 以及 局部原理性。

1.存储体系结构

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

  1. 寄存器(Registers):寄存器是CPU内部的最快速存储,用于存储最常用的数据和指令。它们在执行指令时起着重要作用,速度非常快。

  2. 高速缓存(Cache):高速缓存是位于中央处理器(CPU)和主存储器之间的一层快速存储,用于临时存放经常访问的数据和指令。它可以分为多个层次,如L1、L2和L3缓存,随着级别的升高,容量逐渐增大,但速度逐渐降低。

  3. 主存储器(Main Memory):也称为RAM(Random Access Memory),主存储器是计算机中用于存放运行中程序和数据的地方。它是CPU能够直接访问的存储设备,速度比较快,但容量通常相对有限。

  4. 辅助存储器(Secondary Storage):这包括各种长期存储设备,如硬盘驱动器、固态硬盘、光盘、磁带等。这些设备的容量通常很大,但速度较慢,用于持久性存储和备份。

  5. 虚拟内存(Virtual Memory):虚拟内存是一种在主存和辅助存储之间创建的抽象层,允许程序使用比主存更大的地址空间。操作系统可以根据需要将数据从主存移到辅助存储,以优化内存使用。

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表

2.局部性原理

        存储体系结构的局部性原理是指在计算机程序执行过程中,访问内存的模式往往呈现出一定的规律性,即数据和指令的访问并不是完全随机的,而是倾向于集中在某些特定的内存区域或者特定的数据块上。这个原理分为两种类型:时间局部性和空间局部性。

  1. 时间局部性(Temporal Locality):时间局部性指的是一个被访问过的内存位置在未来的一段时间内很可能会再次被访问。这意味着程序在不久的将来可能会多次使用相同的数据或指令。时间局部性的实现依赖于高速缓存,因为缓存可以暂时存储最近使用过的数据,从而在未来的访问中加速存取。

  2. 空间局部性(Spatial Locality):空间局部性指的是在访问某个内存位置时,附近的内存位置也很可能会被访问。这种情况在程序中存在连续存储、数组访问等情况下特别明显。空间局部性的实现同样依赖于高速缓存,因为缓存可以在一个较小的区域内存储多个相邻的数据块。

        局部性原理对计算机性能具有重要意义。通过充分利用局部性,计算机系统可以更有效地使用高速缓存,减少主存访问次数,从而提高数据访问的速度和效率。这对于减少存储层次之间的数据传输时间以及提高程序的整体性能至关重要。

        举例来说,如果一个循环中多次使用相同的数组元素,由于时间局部性,这些数组元素会被缓存在高速缓存中,从而避免了多次访问主存。同样,如果一个算法中需要顺序访问数组的各个元素,由于空间局部性,缓存中可能会存储这些相邻的数据块,从而加速了后续的访问。

3.为什么顺序表的效率比链表效率高

  1. 顺序表:顺序表是一种将元素顺序存储在一块连续的内存区域中的数据结构。由于顺序表的元素在内存中是相邻存储的,因此它充分利用了空间局部性。当访问一个元素时,由于它的相邻元素也在内存中,这些相邻元素很可能也会被加载到高速缓存中,从而减少了主存访问的次数。此外,由于顺序表的元素是连续存储的,通过数组索引可以直接计算出元素的地址,避免了链表节点的跳转操作。

  2. 链表:链表是一种通过节点和指针连接元素的数据结构,它的元素在内存中不一定是连续存储的。在链表中,每个节点都包含了数据以及指向下一个节点的指针。这种非连续的存储方式可能导致空间局部性较差,因为在访问一个节点时,并不保证它的相邻节点会被加载到高速缓存中。这会导致更频繁的主存访问,从而降低了效率。

        综上所述,顺序表相比链表具有更好的空间局部性。它的元素连续存储,使得访问一个元素时,附近的元素也可能在缓存中,从而减少了主存访问的需求,提高了数据访问的速度和效率。而链表的节点之间不一定相邻存储,导致空间局部性不如顺序表,因此链表在访问数据时可能需要更多的主存访问操作,从而效率相对较低。

        需要注意的是,对于插入、删除等操作,链表在某些情况下可能更加灵活,因为它们不需要移动大量的数据,而顺序表在插入、删除操作时可能需要进行元素的移动,可能会带来一些开销。所以,在选择使用顺序表还是链表时,需要根据具体的应用场景和操作需求综合考虑。

本章结束啦!!!

【编织时空四:探究顺序表与链表的数据之旅】,数据结构,数据结构,双向链表文章来源地址https://www.toymoban.com/news/detail-660872.html

到了这里,关于【编织时空四:探究顺序表与链表的数据之旅】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构与算法】顺序表与链表(单链表和双链表)超详解图示与源码。

                                                       大家好,今天我们来学习数据结构中的顺序表与链表!源码在最后附上 首先我们先来认识一下 顺序表 :                                       **如上图所示:很多人会以为数组就是顺序表,顺序表就是数组,这

    2024年02月21日
    浏览(46)
  • 【数据结构 | 入门】线性表与链表 (问题引入&实现&算法优化)

    🤵‍♂️ 个人主页: @计算机魔术师 👨‍💻 作者简介:CSDN内容合伙人,全栈领域优质创作者。 本文是浙大数据结构学习笔记专栏 这里我们引入一个问题,最常见的多项式,我们如何使用编程将多项式表示出来呢? 我们可以使用数组来表示,但是会随着一个问题,如下图底

    2024年01月21日
    浏览(59)
  • C语言链表的含义与链表数据操作代码详解!

            在讲解开始前,我们先来看一张图片:         如图我们可以看到一列火车,它由车头和车厢组成,同时由链条连接,从整个火车我们可以看出,前一节的车厢尾总有着一个链条,让它紧密与后一个车厢相连。这样,如果我们找到了前一个车厢,那么我们就可以同

    2024年04月23日
    浏览(31)
  • C语言双向链表的含义与链表数据操作代码详解!

    引言: 于本文中,我们将讲到C语言数据结构中的双向链表的含义,以及对于双向链表的增删查改函数。该函数相比于单向链表,反而还更加的简单。希望这篇文章可以对你有帮助,也希望同样热爱代码编程的你能给我支持,您的支持就是我最大的动力! 关于顺序表以及单链

    2024年04月17日
    浏览(34)
  • 【数据结构与算法分析】反转链表与顺序表(内含源码,思路清晰)

      顺序表和链表都是数据结构中常见的线性表。它们的主要区别在于 内存管理方式不同 。   顺序表(Array)是由一系列元素按照一定顺序依次排列而成,它使用连续的内存空间存储数据。顺序表使用一个数组来存储数据,数组中的每个元素都可以通过下标来访问。顺序

    2024年02月07日
    浏览(90)
  • 数组与链表的区别

    数组是连续存储,数组在创建时需要一个整块的空间。 链表是链式存储,链表在内存空间中不一定是连续的。 数组一般创建在栈区,链表一般创建在堆区,在增加节点时需要new或malloc新节点,相较于数组长度不固定,自由度高。 数组可以通过下标随机访问,单向链表只能通

    2024年02月05日
    浏览(68)
  • 数据结构(王道)——线性表之静态链表&顺序表和链表的比较

      如何定义一个静态链表     初始化静态链表:   静态链表的查找、插入、删除           创: 销:   增、删:   查:   顺序表、链表该如何选择?  

    2024年02月16日
    浏览(40)
  • <数据结构>顺序表和链表的比较|缓存命中率

    💭前言:通过之前对顺序表和链表的实现,我们可以发现在增删查改某些操作上两者的效率前言有所差异,本篇文章将总结二者的异同。 顺序表的实现 http://t.csdn.cn/Lxyg2 单链表的实现 http://t.csdn.cn/rHgjG 双链表的实现 http://t.csdn.cn/j3amO 📚顺序表通过数组来实现的,所以在物理

    2024年02月05日
    浏览(40)
  • 数据结构实验---顺序表的合并---链表的基本操作---重点解析约瑟夫问题

    实验的写法多种多样,但本文并未采用 #define 定义容量的写法,这样写已经是很老旧过时的写法。所有实验主体采用均为动态开辟,后续如果利用 C++ 来写或许会应用更多语法… 本篇展示数据结构的两个实验 其中,重点分析约瑟夫问题 实验中代码的命名风格等均与下方博客

    2024年02月16日
    浏览(56)
  • C语言---数据结构实验---顺序表的合并---链表的基本操作---重点解析约瑟夫问题

    实验的写法多种多样,但本文并未采用 #define 定义容量的写法,这样写已经是很老旧过时的写法。所有实验主体采用均为动态开辟,后续如果利用 C++ 来写或许会应用更多语法… 本篇展示数据结构的两个实验 其中,重点分析约瑟夫问题 实验中代码的命名风格等均与下方博客

    2024年02月16日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包