OpenCV实例(九)基于深度学习的运动目标检测(三)YOLOv3识别物体

这篇具有很好参考价值的文章主要介绍了OpenCV实例(九)基于深度学习的运动目标检测(三)YOLOv3识别物体。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


目标检测,粗略地说就是输入图片/视频,经过处理后得到目标的位置信息(比如左上角和右下角的坐标)、目标的预测类别、目标的预测置信度。前面我们阐述了不少理论知识,现在需要动手实战了。对于初学者来说,自己实现YOLO算法不太现实,幸运的是OpenCV的DNN(Deep Neural Network)模块封装了Darknet框架(封装了YOLO算法)。使用OpenCV能更方便地直接运行已训练的深度学习模型,本次采用在目标检测中最强劲的YOLOv3,基本步骤是先让OpenCV加载预训练YOLOv3模型,然后进行各种检测,比如图片识别、打开计算机自带摄像头进行物体检测等。

为了加载预训练YOLOv3模型,需要准备3个文件(在工程目录下):yolov3.cfg、yolov3.weights和coco.names。其中,yolov3.cfg为yolov3网络配置文件,yolov3.weights为权重文件,coco.names为标签文件。

1.基于YOLOv3识别物体

使用OpenCV dnn模块加载YOLO模型,代码如下:

     net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")

从coco.names导入类别并存储为列表,代码如下:

classes = []
with open("coco.names","r")as f:
	classes = [line.strip() for line inf.readlines()]
print(classes)

完整代码:

import cv2
import numpy as np

net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("coco.names", "r") as f:   #这里使用的是coco所训练的模型yolov3.cfg所以这里对应为coco.names
    classes = [line.strip() for line in f.readlines()]

print(classes)

layer_names = net.getLayerNames()
print(layer_names)
      
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
print(output_layers)

img = cv2.imread("demo1.jpg")

# 获取图像尺寸与通道值
height, width, channels = img.shape
print('The image height is:',height)
print('The image width is:',width)
print('The image channels is:',channels)

blob = cv2.dnn.blobFromImage(img, 1.0 / 255.0, (416, 416), (0, 0, 0), True, crop=False)


from matplotlib import pyplot as plt
 
fig = plt.gcf()
fig.set_size_inches(20, 10)

num = 0
for b in blob:
    for img_blob in b:
        img_blob=cv2.cvtColor(img_blob, cv2.COLOR_BGR2RGB)
        num += 1
        ax = plt.subplot(3/3, 3, num)
        ax.imshow(img_blob)
        title = 'blob_image:{}'.format(num)
        ax.set_title(title, fontsize=20)


net.setInput(blob)
outs = net.forward(output_layers)

for i in range(len(outs)):
    print('The {} layer out shape is:'.format(i), outs[i].shape)

class_ids = []
confidences = []
boxes = []

i = 0
for out in outs:
    for detection in out:
        a = sum(detection[5:])
        if a > 0:
            print(detection[5:])
            i += 1
        if i == 2:
            break
 

i = 0
for out in outs:
    for detection in out:
        print('中心像素坐标 X 对原图宽比值:',detection[0])
        print('中心像素坐标 Y 对原图高比值:',detection[1])
        print('边界框的宽度 W 对原图宽比值:',detection[2])
        print('边界框的高度 H 对原图高比值:',detection[3])
        print('此边界框置信度:',detection[4])
        break
    break
 



plt_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

fig = plt.gcf()
fig.set_size_inches(20, 10)

plt.imshow(plt_img)

# jupyter 对每次运行结果会保留,再次运行列表创建
class_ids = []
confidences = []
boxes = []

i = 0

for out in outs:
    for detection in out:
        scores = detection[5:]
        class_id = np.argmax(scores)
        confidence = scores[class_id]
        if confidence > 0.5:
            center_x = int(detection[0] * width)
            center_y = int(detection[1] * height)
            
            w = int(detection[2] * width)        
            h = int(detection[3] * height)
            x = int(center_x - w / 2)
            y = int(center_y - h / 2)

            boxes.append([x, y, w, h])
            confidences.append(float(confidence))
            class_ids.append(class_id)
            label = classes[class_id]
            plt.gca().add_patch(
            plt.Rectangle((x, y), w,
                          h, fill=False,
                          edgecolor=(0, 1, 1), linewidth=2)
            )
            plt.text(x, y - 10, label, color = (1, 0, 0), fontsize=20)
            
            print('object {} :'.format(i), label)
            i += 1

plt.show()
  

plt_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

fig = plt.gcf()
fig.set_size_inches(30, 20)

ax_img = plt.subplot(1, 2, 1)

ax_img.imshow(plt_img)

# jupyter 对每次运行结果会保留,再次运行一次
class_ids = []
confidences = []
boxes = []

i = 0

for out in outs:
    for detection in out:
        scores = detection[5:]
        class_id = np.argmax(scores)
        confidence = scores[class_id]
        if confidence > 0.5:
            center_x = int(detection[0] * width)
            center_y = int(detection[1] * height)
            
            w = int(detection[2] * width)        
            h = int(detection[3] * height)
            x = int(center_x - w / 2)
            y = int(center_y - h / 2)

            boxes.append([x, y, w, h])
            confidences.append(float(confidence))
            class_ids.append(class_id)
            label = classes[class_id]
            plt.gca().add_patch(
            plt.Rectangle((x, y), w,
                          h, fill=False,
                          edgecolor=(0, 1, 1), linewidth=2)
            )
            plt.text(x, y - 10, label, color = (1, 0, 0), fontsize=20)
            
            print('object {} :'.format(i), label + ' '*(10 - len(label)), 'confidence :{}'.format(confidence))
            i += 1

print(confidences)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
print(indexes, end='')

ax_img = plt.subplot(1, 2, 2)
ax_img.imshow(plt_img)
for j in range(len(boxes)):
    if j in indexes:
        x, y, w, h = boxes[j]
        label = classes[class_ids[j]]
        plt.gca().add_patch(
            plt.Rectangle((x, y), w,
                          h, fill=False,
                          edgecolor=(0, 1, 1), linewidth=2)
            )
        plt.text(x, y - 10, label, color = (1, 0, 0), fontsize=20)
        

plt.show()
 

获得输出层的代码:

     layer_names = net.getLayerNames()
     print(layer_names)
     
     output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
     print(output_layers)

其中,getLayerNames函数获取网络各层名称;getUnconnectedOutLayers函数返回具有未连接输出的图层索引。

添加处理图像并获取blob的代码:

    img = cv2.imread("demo1.jpg")
    # 获取图像尺寸与通道值
    height, width, channels = img.shape
    print('The image height is:',height)
    print('The image width is:',width)
    print('The image channels is:',channels)
    
    blob = cv2.dnn.blobFromImage(img, 1.0 / 255.0, (416, 416), (0, 0, 0), True,
crop=False)

此时运行程序,打印的高度、宽度和通道数如下:

     The image height is: 2250
     The image width is: 4000
     The image channels is: 3

(添加Matplotlib可视化blob下的图像,代码如下:

     from matplotlib import pyplot as plt

OpenCV采用的是BGR,Matplotlib采用的是RGB,需要使用cv2.COLOR_BGR2RGB将BGR转换为RGB。

利用setInput函数将blob输入网络,利用forward函数输入网络输出层的名字来计算网络输出。本次计算中output_layers包含3个输出层的列表,所以outs的值也是一个包含3个矩阵(array)的列表(list)。
这个循环会输出以下内容:

     The 0 layer out shape is: (507, 85)
     The 1 layer out shape is: (2028, 85)
     The 2 layer out shape is: (8112, 85)

然后进行识别与标签处理,创建记录数据列表。
其中,class_ids记录类别名;confidences记录算法检测物体概率;boxes记录框的坐标。YOLOv3对于一个416×416的输入图像,在每个尺度的特征图的每个网格中设置3个先验框,总共有13×13×3 + 26×26×3 + 52×52×3 = 10647个预测。每一个预测是一个85(4+1+80)维向量,这个85维向量包含边框坐标(4个数值)、边框置信度(1个数值)、对象类别的概率(对于COCO数据集,有80种对象),所以我们通过detection[5:]获取detection的后80个数据(类似独热码),获取其最大值索引对应的coco.names类别。

OpenCV实例(九)基于深度学习的运动目标检测(三)YOLOv3识别物体,OpenCV,opencv,深度学习,目标检测
在检测中发现出现了双框(或者多框)效果。OpenCV dnn模块自带了NMSBoxes()函数,可以使用NMS算法解决多框问题。NMS的目的是在邻域内保留同一检测目标置信度最大的框,在下方输出中可以发现对于邻域相同的目标检测只保留了confidence值最大的box索引,例如object 0 : tvmonitor与object 3 : tvmonitor概率分别为0.9334805607795715与0.9716598987579346,显然保留了object 3 : tvmonitor,在索引indexes中没有[0]元素,其余推断类似。

OpenCV实例(九)基于深度学习的运动目标检测(三)YOLOv3识别物体,OpenCV,opencv,深度学习,目标检测

2.让不同类别物体的捕捉框颜色不同

代码:

import cv2
import numpy as np
from matplotlib import pyplot as plt

# Load Yolo
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("coco.names", "r") as f:
    classes = [line.strip() for line in f.readlines()]

layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]

colors = np.random.uniform(0, 255, size=(len(classes), 3)) / 255

# Loading image
img = cv2.imread("demo1.jpg")
# img = cv2.resize(img, None, fx=0.4, fy=0.4)
height, width, channels = img.shape

# Detecting objects
blob = cv2.dnn.blobFromImage(img, 1.0 / 255.0, (416, 416), (0, 0, 0), True, crop=False)

net.setInput(blob)
outs = net.forward(output_layers)

# Showing informations on the screen
class_ids = []
confidences = []
boxes = []

fig = plt.gcf()
fig.set_size_inches(20, 10)
plt_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(plt_img)

for out in outs:
    for detection in out:
        scores = detection[5:]
        class_id = np.argmax(scores)
        confidence = scores[class_id]
        if confidence > 0.5:
            # Object detected
            center_x = int(detection[0] * width)
            center_y = int(detection[1] * height)
            w = int(detection[2] * width)
            h = int(detection[3] * height)

            # Rectangle coordinates
            x = int(center_x - w / 2)
            y = int(center_y - h / 2)

            boxes.append([x, y, w, h])
            confidences.append(float(confidence))
            class_ids.append(class_id)

indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)

for i in range(len(boxes)):
    if i in indexes:
        x, y, w, h = boxes[i]
        label = str(classes[class_ids[i]])
        color = colors[i]
        plt.gca().add_patch(
            plt.Rectangle((x, y), w,
                          h, fill=False,
                          edgecolor=color, linewidth=2)
            )
        plt.text(x, y - 10, label, color = color, fontsize=20)
 

plt.show()
 

 

运行结果:

OpenCV实例(九)基于深度学习的运动目标检测(三)YOLOv3识别物体,OpenCV,opencv,深度学习,目标检测

3.不用Matplotlib实现目标检测

代码:

import cv2
import numpy as np

# Load Yolo
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("coco.names", "r") as f:
    classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))

# Loading image
img = cv2.imread("demo1.jpg")
height, width, channels = img.shape

# Detecting objects
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
        
net.setInput(blob)
outs = net.forward(output_layers)

# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
    for detection in out:
        scores = detection[5:]
        class_id = np.argmax(scores)
        confidence = scores[class_id]
        if confidence > 0.5:
            # Object detected
            center_x = int(detection[0] * width)
            center_y = int(detection[1] * height)
            w = int(detection[2] * width)
            h = int(detection[3] * height)

            # Rectangle coordinates
            x = int(center_x - w / 2)
            y = int(center_y - h / 2)

            boxes.append([x, y, w, h])
            confidences.append(float(confidence))
            class_ids.append(class_id)

indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)

font = cv2.FONT_HERSHEY_SIMPLEX
for i in range(len(boxes)):
    if i in indexes:
        x, y, w, h = boxes[i]
        label = str(classes[class_ids[i]])
        color = colors[i]
        cv2.rectangle(img, (x, y), (x + w, y + h), color, 3)
        cv2.putText(img, label, (x, y - 20), font, 2, color, 3)

cv2.namedWindow("Image",0)
cv2.resizeWindow("Image", 1600, 900)
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果:

OpenCV实例(九)基于深度学习的运动目标检测(三)YOLOv3识别物体,OpenCV,opencv,深度学习,目标检测文章来源地址https://www.toymoban.com/news/detail-660939.html

到了这里,关于OpenCV实例(九)基于深度学习的运动目标检测(三)YOLOv3识别物体的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于opencv深度学习,交通目标检测,行人车辆检测,人流统计,交通流量检测

    文章目录 0 前言+ 1. 目标检测概况+ 1.1 什么是目标检测?+ 1.2 发展阶段 2. 行人检测+ 2.1 行人检测简介+ 2.2 行人检测技术难点+ 2.3 行人检测实现效果+ 2.4 关键代码-训练过程 最后 设计项目案例演示地址: 链接 毕业设计代做一对一指导项目方向涵盖: 1.1 什么是目标检测? 目标检

    2024年02月04日
    浏览(55)
  • OpenCV与AI深度学习 | 实战 | 基于YOLOv9+SAM实现动态目标检测和分割(步骤 + 代码)

    本文来源公众号 “OpenCV与AI深度学习” ,仅用于学术分享,侵权删,干货满满。 原文链接:实战 | 基于YOLOv9+SAM实现动态目标检测和分割(步骤 + 代码)     本文主要介绍基于YOLOv9+SAM实现动态目标检测和分割,并给出详细步骤和代码。     在本文中,我们使用YOLOv9+SAM在

    2024年04月22日
    浏览(69)
  • 基于计算机视觉,深度学习、机器学习,OpenCV,图像分割,目标检测卷积神经网络计算机毕业设计选题题目大全选题指导

    随着深度学习、机器学习和神经网络技术的快速发展,计算机视觉领域的应用变得越来越广泛和有趣。本毕业设计旨在探索这一领域的前沿技术,将深度学习模型、神经网络架构、OpenCV图像处理工具,以及卷积神经网络(CNN)的强大能力结合起来,以解决实际图像处理问题。

    2024年02月08日
    浏览(72)
  • 深度学习中语义分割、实例分割、目标检测和图像分类区别

    语义分割 实例分割 目标检测 语义分割:需要判断每个像素属于哪一个类别,属于像素级别分类标注 实例分割:相较于语义分割 会将同一类别的不同物体进行分离标注   目标检测:输入图像通常包含多个物体,对物体的位置与类别进行标注  图像分类:输入图像通常包含一

    2024年02月08日
    浏览(54)
  • 基于OpenCV+LPR模型端对端智能车牌识别——深度学习和目标检测算法应用(含Python+Andriod全部工程源码)+CCPD数据集

    本项目基于CCPD数据集和LPR(License Plate Recognition,车牌识别)模型,结合深度学习和目标检测等先进技术,构建了一个全面的车牌识别系统,实现了从车牌检测到字符识别的端到端解决方案。 首先,我们利用CCPD数据集,其中包含大量的中文车牌图像,用于模型的训练和验证。

    2024年02月09日
    浏览(44)
  • 竞赛选题 机器视觉目标检测 - opencv 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习目标检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng

    2024年02月07日
    浏览(48)
  • 挑战杯 机器视觉目标检测 - opencv 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习目标检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng

    2024年04月13日
    浏览(54)
  • 目标检测YOLOv3基于DarkNet53模型测试-笔记

    目标检测YOLOv3基于DarkNet53模型测试-笔记 预测和试测结果: YOLOv3和DarkNet53网络示意图: DarkNet-53网络中Residual Block列差块(基本单元)结构和代码BasicBlock类实现 YOLOv3网络图中基本图的描述 (1)Res Unit即为上图的BasicBlock残差块 (2)CBL即为Conv2D+BatchNorm+LeakReLU组合的卷积基本层 (

    2024年02月14日
    浏览(39)
  • 竞赛 深度学习卫星遥感图像检测与识别 -opencv python 目标检测

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/da

    2024年02月06日
    浏览(93)
  • 计算机竞赛 机器视觉目标检测 - opencv 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习目标检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng

    2024年02月07日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包