学习笔记:Opencv实现拉普拉斯图像锐化算法

这篇具有很好参考价值的文章主要介绍了学习笔记:Opencv实现拉普拉斯图像锐化算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2023.8.19

为了在暑假内实现深度学习的进阶学习,Copy大神的代码,记录学习日常

图像锐化的百科:

图像锐化算法-sharpen_lemonHe_的博客-CSDN博客

在环境配置中要配置opencv:

pip install opencv-contrib-python

Code and lena.png:注意你是否在data下由lena.png

# -*-  coding: utf-8 -*-
# Author : Vincent
# Time   : 2018-05-19
# Func   : Laplacian Sharpen

from PIL import Image
import numpy as np

# 读入原图像
img = Image.open('./data/lena.png')
# img.show()

# 为了减少计算的维度,因此将图像转为灰度图
img_gray = img.convert('L')
img_gray.show()

# 得到转换后灰度图的像素矩阵
img_arr = np.array(img_gray)
h = img_arr.shape[0]  # 行
w = img_arr.shape[1]  # 列

# 拉普拉斯算子锐化图像,用二阶微分
new_img_arr = np.zeros((h, w))  # 拉普拉斯锐化后的图像像素矩阵
for i in range(2, h-1):
    for j in range(2, w-1):
        new_img_arr[i][j] = img_arr[i+1, j] + img_arr[i-1, j] + \
                            img_arr[i, j+1] + img_arr[i, j-1] - \
                            4*img_arr[i, j]

# 拉普拉斯锐化后图像和原图像相加
laplace_img_arr = np.zeros((h, w))  # 拉普拉斯锐化图像和原图像相加所得的像素矩阵
for i in range(0, h):
    for j in range(0, w):
        laplace_img_arr[i][j] = new_img_arr[i][j] + img_arr[i][j]

img_laplace = Image.fromarray(np.uint8(new_img_arr))
img_laplace.show()

img_laplace2 = Image.fromarray(np.uint8(laplace_img_arr))
img_laplace2.show()

学习笔记:Opencv实现拉普拉斯图像锐化算法,学习,笔记,opencv  附上lena.png

 效果所示(解读):

 第一张lena是将三通道的RGB图转换为单通道的灰度图,第二张lena是用二阶拉普拉斯微分算子锐化的图像,第三张lena是用拉普拉斯锐化后图像和原图像相加所得的图像

学习笔记:Opencv实现拉普拉斯图像锐化算法,学习,笔记,opencv学习笔记:Opencv实现拉普拉斯图像锐化算法,学习,笔记,opencv学习笔记:Opencv实现拉普拉斯图像锐化算法,学习,笔记,opencv

 文章来源地址https://www.toymoban.com/news/detail-661123.html

 

 

 

到了这里,关于学习笔记:Opencv实现拉普拉斯图像锐化算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV—拉普拉斯算子(Laplacian)边缘检测:原理与实现

    目录 介绍 拉普拉斯算子的作用 拉普拉斯算子的原理 使用OpenCV实现拉普拉斯算子 完整代码展示 结论 拉普拉斯算子是一种常用于图像处理的边缘检测技术,它有助于识别图像中的边缘和纹理特征。本文将深入探讨拉普拉斯算子的原理,以及如何使用OpenCV实现它。        

    2024年02月04日
    浏览(57)
  • Python实现多种图像锐化方法:拉普拉斯算子和Sobel算子

    图像和视频逐渐成为人们生活中信息获取的重要来源,而图像和视频在传输过程中有很多因素可能造成图像模糊,比如不正确的聚焦会产生离焦模糊,景物和照相机的相对运动会造成运动模糊,图像压缩造成的高频成分丢失模糊。 模糊降低了图像的清晰度,严重影响了图像质

    2024年02月04日
    浏览(55)
  • 基于拉普拉斯金字塔的图像融合

    仅为笔记,供自己使用。 读入两幅大小相同的图像 img1 img2; 构建 img1 img2的 高斯金字塔,层数根据需要设定(本实验为7层); 根据高斯金字塔和拉普拉斯金字塔的关系,推出拉普拉斯金字塔的Li(也为7层,第一层大小和原图相同); 在 两组拉普拉斯图层 的每一层进行图像

    2024年02月11日
    浏览(47)
  • 图像处理之LoG算子(高斯拉普拉斯)

    LoG算子是由拉普拉斯算子改进而来。拉普拉斯算子是二阶导数算子,是一个标量,具有线性、位移不变性,其传函在频域空间的原点为0。所有经过拉普拉斯算子滤波的图像具有零平均灰度。但是该算子的缺点是对噪声具有敏感性,因此在实际应用中,一般先要对图像进行平滑

    2024年02月16日
    浏览(48)
  • 拉普拉斯锐化[原理及Python实现](含拉氏标定、拉普拉斯标定)

    [原理及Python实现](含拉氏标定、拉普拉斯标定) 原创文章;转载请注明出处:©️ Sylvan Ding 锐化处理的主要目的是突出灰度的过度部分。图像锐化的用途多种多样,应用范围从电子印刷和医学成像到工业检测和军事系统的制导等。利用图像微分可以增强边缘和其他突变(如

    2023年04月10日
    浏览(53)
  • OV5640 摄像头的图像拉普拉斯锐化处理和边缘提取

    如图所示,这是整个视频采集系统的原理框图。         上电初始,FPGA 需要通过 IIC 接口对 CMOS Sensor 进行寄存器初始化配置。这些初始化的基本参数,即初始化地址对应的初始化数据都存储在一个预先配置好的 FPGA 片内 ROM中。在初始化配置完成后,CMOS Sensor 就能够持续

    2024年02月01日
    浏览(57)
  • 图谱论学习—拉普拉斯矩阵背后的含义

    一、为什么学习拉普拉斯矩阵     早期,很多图神经网络的概念是基于图信号分析或图扩散的,而这些都需要与图谱论相关的知识。并且在图网络深度学习中(graph deep learning)中,拉普拉斯矩阵是很常用的概念,深入理解其物理含义非常有助于加深对GNN模型的理解。博主最

    2023年04月09日
    浏览(46)
  • 《opencv实用探索·十二》opencv之laplacian(拉普拉斯)边缘检测,Scharr边缘检测,Log边缘检测

    1、Laplacian算子 Laplacian(拉普拉斯)算子是一种二阶导数算子,其具有旋转不变性,可以满足不同方向的图像边缘锐化(边缘检测)的要求。同时,在图像边缘处理中,二阶微分的边缘定位能力更强,锐化效果更好,因此在进行图像边缘处理时,直接采用二阶微分算子而不使

    2024年04月10日
    浏览(40)
  • visual Studio MFC 平台实现拉普拉斯和拉普拉斯与直方图均衡化与中值滤波相结合实现比较

    本文使用visual Studio MFC 平台实现图像增强中的拉普拉斯变换,同时拉普拉斯一般不会单独使用,与其他平滑操作相结合,本文使用了拉普拉斯与直方图均衡化以及与中值滤波相结合,也对三种方式进行了对比 关于基础工程的创建可以参考 01-Visual Studio 使用MFC 单文档工程绘制

    2024年02月04日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包