opencv-人脸关键点定位

这篇具有很好参考价值的文章主要介绍了opencv-人脸关键点定位。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

#导入工具包
from collections import OrderedDict
import numpy as np
import argparse
import dlib
import cv2

#https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
#http://dlib.net/files/

# 参数
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
	help="path to facial landmark predictor")
ap.add_argument("-i", "--image", required=True,
	help="path to input image")
args = vars(ap.parse_args())

FACIAL_LANDMARKS_68_IDXS = OrderedDict([
	("mouth", (48, 68)),
	("right_eyebrow", (17, 22)),
	("left_eyebrow", (22, 27)),
	("right_eye", (36, 42)),
	("left_eye", (42, 48)),
	("nose", (27, 36)),
	("jaw", (0, 17))
])


FACIAL_LANDMARKS_5_IDXS = OrderedDict([
	("right_eye", (2, 3)),
	("left_eye", (0, 1)),
	("nose", (4))
])

def shape_to_np(shape, dtype="int"):
	# 创建68*2

文章来源地址https://www.toymoban.com/news/detail-661213.html

到了这里,关于opencv-人脸关键点定位的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Mediapipe人脸关键点检测

    MediaPipe是由google制作的开源的、跨平台的机器学习框架,可以将一些模型部署到不同的平台和设备上使用的同时,也能保住检测速度。 从图中可以发现,能在Python上实现的功能包括人脸检测(Face Detection)、人脸关键点(Face Mesh),手部关键点(Hands)等。利用C++能实现更丰富

    2024年02月02日
    浏览(39)
  • 基于YOLO的3D人脸关键点检测方案

    YOLOLandmark解决了2D的人脸关键点检测问题,但3D任务仍然是个空白。我们能够在该领域继续突破呢? 我们最新的工作已经放到ArXiv: YOLOMT 3D人脸关键点数据调研 3D FLD的评估策略有哪些 当前领先的技术方法达到了什么水平? 我们的方法实现: 数据集转为YOLO格式 修改YOLO8Pose的入

    2024年02月12日
    浏览(37)
  • 人脸68、29、21、14、5关键点标注序号及对应关系

    最近需要用到solvePnP算法[1]通过人脸关键点求解人脸姿态,涉及到的数据集中关键点标注数量不统一,但网上使用solvePnP算法时人脸模型比较好找到的是68个关键点,因此需要找到模型的68个关键点中与其他几种数量关键点的对应关系。 目录 98关键点标注序号 68关键点标注序号

    2024年02月08日
    浏览(62)
  • 解剖学关键点检测方向论文翻译和精读:基于热力图回归的CNN融入空间配置实现关键点定位

    Abstract: In many medical image analysis applications, only a limited amount of training data is available due to the costs of image acquisition and the large manual annotation effort required from experts. Training recent state-of-the-art machine learning methods like convolutional neural networks (CNNs) from small datasets is a challenging task. In this wo

    2024年02月09日
    浏览(100)
  • 人脸与关键点检测:YOLO5Face实战

    Github:https://github.com/deepcam-cn/yolov5-face 导读:居然花了一天时间把该项目复现,主要是折腾在数据集格式上,作者居然在train2yolo中居然把Widerface训练集(12000+张图)重新一张一张保存,不这么还出bug,原因是无法读到数据缓存;在评估阶段,val2yolo也没用上。搬运工,一个字,

    2024年02月06日
    浏览(48)
  • pytorch实现AI小设计-1:Resnet50人脸68关键点检测

            本项目是AI入门的应用项目,后续可以补充内容完善作为满足个人需要。通过构建自己的人脸数据集,此项目训练集为4580张图片,测试集为2308张图片,使用resnet50网络进行训练,最后进行效果展示。本项目也提供了量化内容,便于在硬件上部署。         研究A

    2024年01月18日
    浏览(42)
  • 《数字图像处理》dlib人脸检测获取关键点,delaunay三角划分,实现人脸的几何变换warpping,接着实现两幅人脸图像之间的渐变合成morphing

           这学期在上《数字图像处理》这门课程,老师布置了几个大作业,自己和同学一起讨论完成后,感觉还挺有意思的,就想着把这个作业整理一下 :   目录 1.实验任务和要求 2.实验原理 3.实验代码 3.1利用人脸特征点检测工具dlib获取人脸关键点 目录 1.实验任务和要求

    2024年02月03日
    浏览(40)
  • Python+OpenCV+OpenPose实现人体姿态估计(人体关键点检测)

    1、人体姿态估计简介 2、人体姿态估计数据集 3、OpenPose库 4、实现原理 5、实现神经网络 6、实现代码 人体姿态估计(Human Posture Estimation),是通过将图片中已检测到的人体关键点正确的联系起来,从而估计人体姿态。 人体关键点通常对应人体上有一定自由度的关节,比如颈、

    2024年02月04日
    浏览(44)
  • YOLOv8/YOLOv7/YOLOv5+CRNN-车牌识别、车牌关键点定位、车牌检测(毕业设计)

    本项目通过yolov8/yolov7/yolov5+CRNN训练自己的数据集,实现了一个车牌识别、车牌关键点定位、车牌检测算法,可实现12种单双层车牌的字符识别:单行蓝牌、单行黄牌、新能源车牌、白色警用车牌、教练车牌、武警车牌、双层黄牌、双层白牌、使馆车牌、港澳粤Z牌、双层绿牌、

    2024年02月03日
    浏览(46)
  • 使用opencv自制一个YOLO常规数据和关键点数据的标注工具

    工具由opencv编写,可以直接生成YOLO所需要的标签(pose和常规标签) 代码放到了文章末尾,以及百度云下载链接 首先放一段实际操作的视频展示 yolov5数据集标注,yolo-pose数据集标注 按Q切换到下一张图像 按T直接退出 按Y删除当前图片和对应标签 按R隐藏当前内容,继续标注完

    2024年02月11日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包