MySQL运行时的可观测性

这篇具有很好参考价值的文章主要介绍了MySQL运行时的可观测性。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

  • 1.说在前面的话

  • 2.安装employees测试库

  • 3.观测SQL运行状态

    • 3.1 观测SQL运行时的内存消耗
    • 3.2 观测SQL运行时的其他开销
    • 3.3 观测SQL运行进度

感知SQL运行时的状态

1. 说在前面的话

在MySQL里,一条SQL运行时产生多少磁盘I/O,占用多少内存,是否有创建临时表,这些指标如果都能观测到,有助于更快发现SQL瓶颈,扑灭潜在隐患。

从MySQL 5.7版本开始,performance_schema就默认启用了,并且还增加了sys schema,到了8.0版本又进一步得到增强提升,在SQL运行时就能观察到很多有用的信息,实现一定程度的可观测性。

下面举例说明如何进行观测,以及主要观测哪些指标。

2. 安装employees测试库

安装MySQL官方提供的employees测试数据库,戳此链接(https://dev.mysql.com/doc/index-other.html)下载,解压缩后开始安装:

$ mysql -f < employees.sql;

INFO
CREATING DATABASE STRUCTURE
INFO
storage engine: InnoDB
INFO
LOADING departments
INFO
LOADING employees
INFO
LOADING dept_emp
INFO
LOADING dept_manager
INFO
LOADING titles
INFO
LOADING salaries
data_load_time_diff
00:00:37

MySQL还提供了相应的使用文档:https://dev.mysql.com/doc/employee/en/

本次测试采用GreatSQL 8.0.32-24版本,且运行在MGR环境中:

greatsql> \s
...
Server version:         8.0.32-24 GreatSQL, Release 24, Revision 3714067bc8c
...

greatsql> select MEMBER_ID, MEMBER_ROLE, MEMBER_VERSION from performance_schema.replication_group_members;
+--------------------------------------+-------------+----------------+
| MEMBER_ID                            | MEMBER_ROLE | MEMBER_VERSION |
+--------------------------------------+-------------+----------------+
| 2adec6d2-febb-11ed-baca-d08e7908bcb1 | SECONDARY   | 8.0.32         |
| 2f68fee2-febb-11ed-b51e-d08e7908bcb1 | ARBITRATOR  | 8.0.32         |
| 5e34a5e2-feb6-11ed-b288-d08e7908bcb1 | PRIMARY     | 8.0.32         |
+--------------------------------------+-------------+----------------+

3. 观测SQL运行状态

查看当前连接/会话的连接ID、内部线程ID:

greatsql> select processlist_id, thread_id from performance_schema.threads where processlist_id = connection_id();
+----------------+-----------+
| processlist_id | thread_id |
+----------------+-----------+
|            110 |       207 |
+----------------+-----------+

查询得到当前的连接ID=110,内部线程ID=207。

P.S,由于本文整理过程不是连续的,所以下面看到的 thread_id 值可能会有好几个,每次都不同。

3.1 观测SQL运行时的内存消耗

执行下面的SQL,查询所有员工的薪资总额,按员工号分组,并按薪资总额倒序,取前10条记录:

greatsql> explain select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: salaries
   partitions: NULL
         type: index
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 7
          ref: NULL
         rows: 2838426
     filtered: 100.00
        Extra: Using temporary; Using filesort

看到需要全索引扫描(其实也等同于全表扫描,因为是基于PRIMARY索引),并且还需要生成临时表,以及额外的filesort。

在正式运行该SQL之前,在另外的窗口中新建一个连接会话,执行下面的SQL先观察该连接/会话当前的内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G
*************************** 1. row ***************************
         thread_id: 207
              user: root@localhost
current_count_used: 9
 current_allocated: 26266
 current_avg_alloc: 2918.4444
 current_max_alloc: 16464
   total_allocated: 30311

等到该SQL执行完了,再一次查询内存分配情况:

greatsql> select * from sys.x$memory_by_thread_by_current_bytes where thread_id = 207\G
*************************** 1. row ***************************
         thread_id: 207
              user: root@localhost
current_count_used: 13
 current_allocated: 24430
 current_avg_alloc: 1879.2308
 current_max_alloc: 16456
   total_allocated: 95719

我们注意到几个数据的变化情况,用下面表格来展示:

指标 运行前 运行后
total_allocated 30311 95719

也就是说,SQL运行时,需要分配的内存是:95719 - 30311 = 65408 字节。

3.2 观测SQL运行时的其他开销

通过观察 performance_schema.status_by_thread 表,可以知道相应连接/会话中SQL运行的一些状态指标。在SQL运行结束后,执行下面的SQL命令即可查看:

greatsql> select * from performance_schema.status_by_thread where thread_id = 207;
...
|       207 | Created_tmp_disk_tables             | 0                        |
|       207 | Created_tmp_tables                  | 0                        |
...
|       207 | Handler_read_first                  | 1                        |
|       207 | Handler_read_key                    | 1                        |
|       207 | Handler_read_last                   | 0                        |
|       207 | Handler_read_next                   | 2844047                  |
|       207 | Handler_read_prev                   | 0                        |
|       207 | Handler_read_rnd                    | 0                        |
|       207 | Handler_read_rnd_next               | 0                        |
|       207 | Handler_rollback                    | 0                        |
|       207 | Handler_savepoint                   | 0                        |
|       207 | Handler_savepoint_rollback          | 0                        |
|       207 | Handler_update                      | 0                        |
|       207 | Handler_write                       | 0                        |
|       207 | Last_query_cost                     | 286802.914893            |
|       207 | Last_query_partial_plans            | 1                        |
...
|       207 | Select_full_join                    | 0                        |
|       207 | Select_full_range_join              | 0                        |
|       207 | Select_range                        | 0                        |
|       207 | Select_range_check                  | 0                        |
|       207 | Select_scan                         | 1                        |
|       207 | Slow_launch_threads                 | 0                        |
|       207 | Slow_queries                        | 1                        |
|       207 | Sort_merge_passes                   | 0                        |
|       207 | Sort_range                          | 0                        |
|       207 | Sort_rows                           | 1                       |
|       207 | Sort_scan                           | 1                        |
...

上面我们只罗列了部分比较重要的状态指标。从这个结果也可以佐证slow query log中的结果,确实没创建临时表。

作为参照,查看这条SQL对应的slow query log记录:

# Query_time: 0.585593  Lock_time: 0.000002 Rows_sent: 10  Rows_examined: 2844057 Thread_id: 110 Errno: 0 Killed: 0 Bytes_received: 115 Bytes_sent: 313 Read_first: 1 Read_last: 0 Read_key: 1 Read_next: 2844047 Read_prev: 0 Read_rnd: 0 Read_rnd_next: 0 Sort_merge_passes: 0 Sort_range_count: 0 Sort_rows: 10 Sort_scan_count: 1 Created_tmp_disk_tables: 0 Created_tmp_tables: 0 Start: 2023-07-06T10:06:01.438376+08:00 End: 2023-07-06T10:06:02.023969+08:00 Schema: employees Rows_affected: 0
# Tmp_tables: 0  Tmp_disk_tables: 0  Tmp_table_sizes: 0
# InnoDB_trx_id: 0
# Full_scan: Yes  Full_join: No  Tmp_table: No  Tmp_table_on_disk: No
# Filesort: Yes  Filesort_on_disk: No  Merge_passes: 0
#   InnoDB_IO_r_ops: 0  InnoDB_IO_r_bytes: 0  InnoDB_IO_r_wait: 0.000000
#   InnoDB_rec_lock_wait: 0.000000  InnoDB_queue_wait: 0.000000
#   InnoDB_pages_distinct: 4281
use employees;
SET timestamp=1688609161;
select emp_no, sum(salary) as total_salary from salaries group by emp_no order by total_salary desc limit 10;

可以看到,Created_tmp_disk_tables, Created_tmp_tables, Handler_read_next, Select_full_join, Select_scan, Sort_rows, Sort_scan, 等几个指标的数值是一样的。

还可以查看该SQL运行时的I/O latency情况,SQL运行前后两次查询对比:

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| root@localhost |     7 | 75.39 us      | 5.84 us     | 10.77 us    | 22.12 us    |       207 |            110 |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

...

greatsql> select * from sys.io_by_thread_by_latency where thread_id = 207;
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| user           | total | total_latency | min_latency | avg_latency | max_latency | thread_id | processlist_id |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+
| root@localhost |     8 | 85.29 us      | 5.84 us     | 10.66 us    | 22.12 us    |       207 |            110 |
+----------------+-------+---------------+-------------+-------------+-------------+-----------+----------------+

可以看到这个SQL运行时的I/O latency是:85.29 - 75.39 = 9.9us。

3.3 观测SQL运行进度

我们知道,运行完一条SQL后,可以利用PROFLING功能查看它各个阶段的耗时,但是在运行时如果也想查看各阶段耗时该怎么办呢?

从MySQL 5.7版本开始,可以通过 performance_schema.events_stages_% 相关表查看SQL运行过程以及各阶段耗时,需要先修改相关设置:

# 确认是否对所有主机&用户都启用
greatsql> SELECT * FROM performance_schema.setup_actors;
+------+------+------+---------+---------+
| HOST | USER | ROLE | ENABLED | HISTORY |
+------+------+------+---------+---------+
| %    | %    | %    | NO      | NO      |
+------+------+------+---------+---------+

# 修改成对所有主机&用户都启用
greatsql> UPDATE performance_schema.setup_actors
 SET ENABLED = 'YES', HISTORY = 'YES'
 WHERE HOST = '%' AND USER = '%';
 
# 修改 setup_instruments & setup_consumers 设置
greatsql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_statements_%';
 
greatsql> UPDATE performance_schema.setup_consumers
 SET ENABLED = 'YES'
 WHERE NAME LIKE '%events_stages_%'; 

这就实时可以观测SQL运行过程中的状态了。

在SQL运行过程中,从另外的窗口查看该SQL对应的 EVENT_ID

greatsql> SELECT EVENT_ID, TRUNCATE(TIMER_WAIT/1000000000000,6) as Duration, SQL_TEXT        FROM performance_schema.events_statements_history WHERE thread_id = 85 order by event_id desc limit 5;
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+
| EVENT_ID | Duration | SQL_TEXT                                                                                                                      |
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+
|   149845 |   0.6420 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149803 |   0.6316 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149782 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149761 |   0.6361 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
|   149740 |   0.6245 | select emp_no, sum(salary) as total_salary, sleep(0.000001) from salaries group by emp_no order by total_salary desc limit 10 |
+----------+----------+-------------------------------------------------------------------------------------------------------------------------------+

# 再根据 EVENT_ID 值去查询 events_stages_history_long
greatsql> SELECT thread_id ,event_Id, event_name AS Stage, TRUNCATE(TIMER_WAIT/1000000000000,6) AS Duration  FROM performance_schema.events_stages_history_long WHERE NESTING_EVENT_ID = 149845 order by event_id;
+-----------+----------+------------------------------------------------+----------+
| thread_id | event_Id | Stage                                          | Duration |
+-----------+----------+------------------------------------------------+----------+
|        85 |   149846 | stage/sql/starting                             |   0.0000 |
|        85 |   149847 | stage/sql/Executing hook on transaction begin. |   0.0000 |
|        85 |   149848 | stage/sql/starting                             |   0.0000 |
|        85 |   149849 | stage/sql/checking permissions                 |   0.0000 |
|        85 |   149850 | stage/sql/Opening tables                       |   0.0000 |
|        85 |   149851 | stage/sql/init                                 |   0.0000 |
|        85 |   149852 | stage/sql/System lock                          |   0.0000 |
|        85 |   149854 | stage/sql/optimizing                           |   0.0000 |
|        85 |   149855 | stage/sql/statistics                           |   0.0000 |
|        85 |   149856 | stage/sql/preparing                            |   0.0000 |
|        85 |   149857 | stage/sql/Creating tmp table                   |   0.0000 |
|        85 |   149858 | stage/sql/executing                            |   0.6257 |
|        85 |   149859 | stage/sql/end                                  |   0.0000 |
|        85 |   149860 | stage/sql/query end                            |   0.0000 |
|        85 |   149861 | stage/sql/waiting for handler commit           |   0.0000 |
|        85 |   149862 | stage/sql/closing tables                       |   0.0000 |
|        85 |   149863 | stage/sql/freeing items                        |   0.0000 |
|        85 |   149864 | stage/sql/logging slow query                   |   0.0000 |
|        85 |   149865 | stage/sql/cleaning up                          |   0.0000 |
+-----------+----------+------------------------------------------------+----------+

上面就是这条SQL的运行进度展示,以及各个阶段的耗时,和PROFILING的输出一样,当我们了解一条SQL运行所需要经历的各个阶段时,从上面的输出结果中也就能估算出该SQL大概还要多久能跑完,决定是否要提前kill它。

如果想要观察DDL SQL的运行进度,可以参考这篇文章:不用MariaDB/Percona也能查看DDL的进度。

更多的观测指标、维度还有待继续挖掘,以后有机会再写。

另外,也可以利用MySQL Workbench工具,或MySQL Enterprise Monitor,都已集成了很多可观测性指标,相当不错的体验。

延伸阅读

  • Query Profiling Using Performance Schema, https://dev.mysql.com/doc/refman/8.0/en/performance-schema-query-profiling.html
  • 不用MariaDB/Percona也能查看DDL的进度,https://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653931466&idx=1&sn=8c14c7a6449205b61990a567a1be315e&scene=21#wechat_redirect
  • 事件记录 | performance_schema全方位介绍,http://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653935075&idx=3&sn=85be3a5bbe6be8bacd2a88e22ab95b5c&chksm=bd3b4f898a4cc69fb303f977912f4ee4a399ab96b72b8d994e262b1095edad4c7e2e6f45dc9b&scene=21#wechat_redirect
  • 内存分配统计视图 | 全方位认识 sys 系统库,http://mp.weixin.qq.com/s?__biz=MjM5NzAzMTY4NQ==&mid=2653935156&idx=6&sn=3061ca49bdefd61eca1fe9b3c52097a1&chksm=bd3b4c5e8a4cc5480e6c27dc42a68837a113abea4279b4ae492078f263cb65421c99dc39d978&scene=21#wechat_redirect

Enjoy GreatSQL 😃

关于 GreatSQL

GreatSQL是适用于金融级应用的国内自主开源数据库,具备高性能、高可靠、高易用性、高安全等多个核心特性,可以作为MySQL或Percona Server的可选替换,用于线上生产环境,且完全免费并兼容MySQL或Percona Server。

相关链接: GreatSQL社区 Gitee GitHub Bilibili

GreatSQL社区:

社区博客有奖征稿详情:https://greatsql.cn/thread-100-1-1.html

MySQL运行时的可观测性

技术交流群:

微信:扫码添加GreatSQL社区助手微信好友,发送验证信息加群

MySQL运行时的可观测性文章来源地址https://www.toymoban.com/news/detail-661405.html

到了这里,关于MySQL运行时的可观测性的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • dephi RTI (Runtime Type Information)获取运行时的控件信息

    var Edit: TComponent; begin Edit := FindComponent(\\\"Edit1\\\"); If Edit is TEdit then TEdit(Edit).Text := \\\'你好 Delphi7\\\'; end;     RTTI(RunTime Type Information): 运行时类型信息, 就是在程序运行后也能得到类型(譬如 TButton 类)的信息.   这在早期主要用于 IDE 设计时, 譬如把一个 Button 放到窗体后, 此时我们的程序

    2024年02月15日
    浏览(38)
  • QT使用QSetting保存程序运行时的一些状态信息到配置文件

    参考:https://zhuanlan.zhihu.com/p/351214526 在产品使用过程中,有些用户有特定的习惯。比如窗口大小是的大小,文件打开的方式等等。 因此我们需要有一个文件来保存用户的一些偏好信息,在程序重新启动的时候再进行偏好设置。 这里用到了QSetting类。 这个类允许你创建一个配

    2024年02月14日
    浏览(52)
  • 【unity细节】—怎么将unity编译时和运行时的功能隔开

    👨‍💻个人主页 :@元宇宙-秩沅 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 秩沅 原创 收录于专栏 :unity细节和bug 当编译下执行的代码功能和运行行时执行的代码功能同时存在时,要注意防止性能的消耗,防止编译时的功能在运行时也执行 图片解释:此时获取子物

    2024年02月11日
    浏览(51)
  • 【ARM Trace32(劳特巴赫) 使用介绍 3 - trace32 访问运行时的内存】

    请阅读 【ARM Coresight SoC-400/SoC-600 专栏导读】 上篇文章:【ARM Trace32(劳特巴赫) 使用介绍 2.2 – TRACE32 进阶命令之 DIAG 弹框命令】 下篇文章:【ARM Trace32(劳特巴赫) 使用介绍 4 - Trace32 Discovery 详细介绍】 1.1.1 侵入式 运行时内存访问 侵入式意思是CPU周期性的停止和启动,这样外

    2024年02月03日
    浏览(81)
  • 乌班图安装MySQL5.7时的故障求解

    wget https://dev.mysql.com/get/mysql-apt-config_0.8.12-1_all.deb dpkg -i mysql-apt-config_0.8.12-1_all.deb apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 467B942D3A79BD29 apt update

    2024年02月15日
    浏览(34)
  • 鸿蒙LiteOs读源码教程+向LiteOS中添加一个简单的基于线程运行时的短作业优先调度策略

    【找到了一种简单易懂的实验实现方式,适合基础较薄弱的同学,见第二部分】 最终效果如下: 依次创建了3个任务线程,以One、Two、Three指代,时间分别为15秒、30秒、10秒。 如果按生成顺序输出应该是:One-Two-Three,但我们修改了OsPriQueueEnqueue函数,由原先的“先进先出”,

    2024年02月05日
    浏览(37)
  • 解决mysql启动时的Failed to start LSB: start and stop MySQL问题

    前言: 在下载glibc版本的Mysql时,启动mysql服务时出现了如下错误 网上搜了许多种方法:查看错误日志,或者df -h查看磁盘是否已满等都未解决,后来尝试了重新对数据库进行初始化后才解决了该问题.  数据库初始化: 在对数据库重新进行初始化之前,需要事先删除 /usr/loc

    2024年02月07日
    浏览(50)
  • mysql安装时第四步initializing database出错时的解决方法

    安装mysql时,在第四步一直卡住了显示失败,后找到解决方法,希望能帮助到大家 点击log发现有乱码出现,这个一般时计算机的命名被我们改成了中文了,所以到这一步就会识别中文无法进行下去 保存后再次安装即可

    2024年02月15日
    浏览(59)
  • 记录mysql ON DUPLICATE KEY UPDATE 时的小坑以及其底层处理逻辑

    表 table 字段有**(id,column1,column2,column3)** id 为主键 column1 , column2 有复合唯一约束 这里插入一个已经存在的数据(只是 column1 , column2 一样, column3 不一样) 报错: Field ‘id’ doesn’t have a default value 按理说 column1 , column2 一样应该走更新操作,但是这里走的插入操作,参考

    2024年02月09日
    浏览(36)
  • 解决本地浏览器运行项目时的跨域问题Access to XMLHttpRequest at ‘file:///C:/Users/Len/Desktop/%E5%8F%AF%E4%BF%AE%E6%94%

    解决本地浏览器运行项目时的跨域问题-Access to XMLHttpRequest at ‘file:///C:/Users/Len/Desktop/%E5%8F%AF%E4%BF%AE%E6%94%B9%E9%85%8D%E7%BD%AE/dist/model/model.gltf.xz’ from origin ‘null’ has been blocked by CORS policy: Cross origin requests are only supported for protocol schemes: http, data, chrome-extension, edge, chrome-untrusted, h

    2023年04月08日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包