大数据:NumPy进阶应用详解

这篇具有很好参考价值的文章主要介绍了大数据:NumPy进阶应用详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

专栏介绍

结合自身经验和内部资料总结的Python教程,每天3-5章,最短1个月就能全方位的完成Python的学习并进行实战开发,学完了定能成为大佬!加油吧!卷起来!

全部文章请访问专栏:《Python全栈教程(0基础)》
再推荐一下最近热更的:《大厂测试高频面试题详解》 该专栏对近年高频测试相关面试题做详细解答,结合自己多年工作经验,以及同行大佬指导总结出来的。旨在帮助测试、python方面的同学,顺利通过面试,拿到自己满意的offer!文章来源地址https://www.toymoban.com/news/detail-661549.html


到了这里,关于大数据:NumPy进阶应用详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Python爬虫与数据分析】NumPy进阶——数组操作与运算

    目录 一、NumPy数组操作 1. ndarray更改形状 2. ndarray转置 3. ndarray组合 4. ndarray拆分 5. ndarray排序 二、NumPy数组运算 1. 基本运算 2. 逻辑函数 3. 数学函数 三、日期时间的表示和间隔 1. 日期时间的表示——datetime64 2. 日期时间的计算——timedelta64 3. datetime64与datetime的转换 在对数组进

    2024年02月15日
    浏览(49)
  • 应用Numpy实现对数据的处理

    创建简单的数组 主要使用np.array()函数,语法如下 主要参数: Object:任何具有数组接口方法的对象 dtype:数据类型 ndmin:指定生成数组的最小维数 通过np.arange(stat,stop,step,dtype=None)创建数组 start:起始值,默认为0 stop:终止值,不包含 step:步长 通过np.linspace()生成等差数列 通过

    2024年02月14日
    浏览(37)
  • 【100天精通Python】Day53:Python 数据分析_NumPy数据操作和分析进阶

    目录 1. 广播  2 文件输入和输出 3 随机数生成 4 线性代数操作  5 进阶操作

    2024年02月09日
    浏览(66)
  • python 数据、曲线平滑处理——基于Numpy.convolve实现滑动平均滤波——详解

    滑动平均滤波法 (又称: 递推平均滤波法 ),它把连续取N个采样值看成一个队列 ,队列的长度固定为N ,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出原则) 。把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。 N值的选取:流量,N=

    2024年02月09日
    浏览(50)
  • Python 数据分析入门教程:Numpy、Pandas、Matplotlib和Scikit-Learn详解

    NumPy是一个Python的科学计算基础模块,提供了多维数组和矩阵操作功能。 NumPy中的数组比Python自带的列表更适合进行数值计算和数据分析。 Pandas建立在NumPy之上,提供了更高级的数据分析功能。 Pandas中的DataFrame可以看成是一个二维表格,便于加载和分析数据。 Matplotlib可以用来绘

    2024年02月07日
    浏览(54)
  • NumPy的应用-2

    NumPy是Python中经常用于科学计算的一个库,它拥有高效的数组操作和广播功能,同时还提供了许多常见的数学函数和线性代数操作。本文将介绍NumPy的应用、其他常用函数和矩阵运算。 NumPy是Python中最常用的科学计算库之一,因为它提供了高效的数组操作和广播功能。作为一个

    2023年04月21日
    浏览(25)
  • 【深度学习】 Python 和 NumPy 系列教程(十二):NumPy详解:4、数组广播;5、排序操作

    目录 一、前言 二、实验环境 三、NumPy 0、多维数组对象(ndarray) 多维数组的属性 1、创建数组 2、数组操作 3、数组数学 4、数组广播 5、排序操作 1. np.sort() 函数 2. np.argsort() 函数 3. ndarray.sort() 方法 4. 按列或行排序 5. np.lexsort() 函数 6. np.partition() 函数 7. np.argpartition() 函

    2024年02月08日
    浏览(67)
  • NumPy 中数组拼接、合并详解

    将值添加到数组的末端,返回一个新的数组,而原数组不变。 参数 描述 arr : 类数组 输入的数组 values : 类数组 向数组 arr 添加的元素,需要与 arr 维度相同 axis : 整型 添加操作的方向轴,axis 取 0 表示沿竖直方向操作,axis 取 1 表示沿水平方向操作,若未提供 axis 值,在添加

    2024年01月19日
    浏览(39)
  • 详解Numpy(基于jupyter notebook)

    数据类型及描述 bool: 存储为一个字节的布尔值(真或假) int: 默认整数,相当于 C 的long,通常为int32或int64 intc:相当于 C 的int,通常为int32或int64 intp:用于索引的整数,相当于 C 的size_t,通常为int32或int64 int8字节(-128 ~ 127) int16 :16 位整数(-32768 ~ 32767) int32: 32 位整数(-21474

    2024年02月10日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包