md文本学习

这篇具有很好参考价值的文章主要介绍了md文本学习。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

欢迎使用Markdown编辑器

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: md文本学习,学习

带尺寸的图片: md文本学习,学习

居中的图片: md文本学习,学习

居中并且带尺寸的图片: md文本学习,学习

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目 Value
电脑 $1600
手机 $12
导管 $1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列 第二列 第三列
第一列文本居中 第二列文本居右 第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPE ASCII HTML
Single backticks 'Isn't this fun?' ‘Isn’t this fun?’
Quotes "Isn't this fun?" “Isn’t this fun?”
Dashes -- is en-dash, --- is em-dash – is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML。

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t   . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

这将产生一个流程图。:

  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎文章来源地址https://www.toymoban.com/news/detail-661846.html

到了这里,关于md文本学习的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习科学库】全md文档笔记:Jupyter Notebook和Matplotlib使用(已分享,附代码)

    本系列文章md笔记(已分享)主要讨论人工智能相关知识。主要内容包括,了解机器学习定义以及应用场景,掌握机器学习基础环境的安装和使用,掌握利用常用的科学计算库对数据进行展示、分析,学会使用jupyter notebook平台完成代码编写运行,应用Matplotlib的基本功能实现图

    2024年02月21日
    浏览(40)
  • 【机器学习算法】KNN鸢尾花种类预测案例和特征预处理。全md文档笔记(已分享,附代码)

    本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻

    2024年02月19日
    浏览(45)
  • Keras-5-深度学习用于文本和序列-处理文本数据

    本篇学习记录为:《Python 深度学习》第6章第1节(处理文本数据) 知识点: 深度学习处理文本或序列数据的基本方法是: 循环神经网络 (recurrent neural network) 和 一维卷积神经网络 (1D convert) ; 这些算法的应用范围包括:文档分类、时间序列分类、时间序列比对、时间序列预测

    2024年02月13日
    浏览(45)
  • OCR表格识别(三)——文本检测与文本识别理论学习

    图像识别其实是一个从低层次到高层级特征学习的过程。底层级的特征比较抽象,二高层及的特征比较概念化。在图像识别过程中,也就是从图像像素特征,到图像的形状、轮廓,然后到概念,并进行整合,分类,最终得到目标特征,识别到人脸等。再怎么复杂的信息都是由

    2024年02月05日
    浏览(50)
  • Linux shell编程学习笔记44:编写一个脚本,将md5sum命令执行结果保存到变量中,进而比较两个文件内容是否相同

    在  Linux shell编程学习笔记42:md5sum https://blog.csdn.net/Purpleendurer/article/details/137125672?spm=1001.2014.3001.5501 中,我们提到编写一个在Linux系统下比较两个文件内容是否相同的脚本。 基本思路是: 其中有两个难点: 1.文件的md5值的获取 2.md5值的比较 对于第1个难点,我们的解决办法是

    2024年04月10日
    浏览(72)
  • 深度学习处理文本(NLP)

    深度学习处理文本主要涉及到自然语言处理(NLP)领域。随着深度学习技术的发展,NLP领域已经取得了很大的进展。以下是深度学习在处理文本中的一些主要应用和技术: 词嵌入(Word Embeddings): 词嵌入是将词汇表中的单词映射到稠密的向量,常用的方法有Word2Vec, GloVe和Fas

    2024年02月11日
    浏览(37)
  • 【学习草稿】bert文本分类

    https://github.com/google-research/bert https://github.com/CyberZHG/keras-bert 在 BERT 中,每个单词的嵌入向量由三部分组成: Token 嵌入向量:该向量是 WordPiece 分词算法得到的子单词 ID 对应的嵌入向量。 Segment 嵌入向量:该向量用于表示每个单词所属的句子。对于一个包含两个句子的序列,

    2024年02月07日
    浏览(51)
  • 【机器学习】文本多分类

    声明:这只是浅显的一个小试验,且借助了AI。使用的是jupyter notebook,所以代码是一块一块,从上往下执行的 知识点:正则 删除除数字和字母外的所有字符、 高频词云、混淆矩阵 参考: 使用python和sklearn的中文文本多分类实战开发_文本多标签分类 用二分类器做 python 数据集

    2024年02月07日
    浏览(28)
  • HTTP(超文本传输协议)学习

    关于HTTP补学   一、HTTP能干什么 通过下图能够直观的看出:“交换数据 ” 二、HTTP请求例子 一个 HTTP 方法,通常是由一个动词,像 GET、POST 等,或者一个名词,像 OPTIONS、HEAD 等,来定义客户端执行的动作。典型场景有:客户端意图抓取某个资源(使用 GET );发送 HT

    2024年02月14日
    浏览(38)
  • 猿创征文|【深度学习前沿应用】文本生成

    作者简介 :在校大学生一枚,C/C++领域新星创作者,华为云享专家,阿里云专家博主,腾云先锋(TDP)成员,云曦智划项目总负责人,全国高等学校计算机教学与产业实践资源建设专家委员会(TIPCC)志愿者,以及编程爱好者,期待和大家一起学习,一起进步~ . 博客主页 :

    2024年02月06日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包