在 PyTorch 中使用关键点 RCNN 进行人体姿势估计--附源码

这篇具有很好参考价值的文章主要介绍了在 PyTorch 中使用关键点 RCNN 进行人体姿势估计--附源码。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

人体姿态估计是计算机视觉领域的一个重要研究领域。它涉及估计人体上的独特点,也称为关键点。在这篇博文中,我们将讨论一种在包含人类的图像上查找关键点的算法,称为Keypoint-RCNN。该代码是使用 Pytorch 使用Torchvision库编写的。

假设您想要建立一名私人健身教练,可以通过分析身体关节的姿势来指导您采取正确的身体姿势。这就是姿势估计发挥作用的地方。

关键点检测的思想是检测图像中的兴趣点或关键位置。这些可能是: 
文章来源地址https://www.toymoban.com/news/detail-661862.html

  • 面部标志(如鼻尖、眼角、面部边界等)
  • 或人的身体关节(肩膀、手腕、脚踝)
  • 或图像中的角点和斑点

从 RCNN 到 Mask-RCNN

  • 这一切都始于 RCNN(基于区域的卷积神经网络)演变成 Fast-RCNN,然后是 Faster-RC

到了这里,关于在 PyTorch 中使用关键点 RCNN 进行人体姿势估计--附源码的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • MMPose姿态估计+人体关键点识别效果演示

    1.1 背景 首先姿态估计属于计算机视觉领域的一个基础研究方向。MMPose是基于Pytorch的姿态估计开源算法库,功能全,涵盖的算法多。 1.2 姿态估计的任务分类 维度 :预测的是2D还是3D姿态。 输入格式 :图片 or 视频 姿态的表示形式 :关键点 or 形状等 目标类型 :全身 or 人脸

    2024年01月20日
    浏览(43)
  • MediaPipe之人体关键点检测>>>BlazePose论文精度

    BlazePose: On-device Real-time Body Pose tracking BlazePose:设备上实时人体姿态跟踪 论文地址:[2006.10204] BlazePose: On-device Real-time Body Pose tracking (arxiv.org) 主要贡献: (1)提出一个新颖的身体姿态跟踪解决方案和一个轻量级的身体姿态估计神经网络,同时使用了热图(heatmap)和对关键点坐标

    2024年02月06日
    浏览(61)
  • 基于mediapipe的人体33个关键点坐标(BlazePose)

    BlazePose是一种轻量化的卷积神级网络架构,适用于单人的关键点检测,在人体身上标注33个关键点,在单个中层手机CPU上的执行速度要比OpenPose在20核桌面CPU[5]上快25-75倍。 33个关键点如下图所示 导入库 导入模型 读入图像 关键点检测结果 此时会输出关键点检测结果,如下图所

    2024年02月12日
    浏览(36)
  • YOLOv5姿态估计:HRnet实时检测人体关键点

    前言: Hello大家好,我是Dream。 今天来学习一下 利用YOLOv5进行姿态估计,HRnet与SimDR检测图片、视频以及摄像头中的人体关键点 ,欢迎大家一起前来探讨学习~ 首先需要我们利用Pycharm直接克隆github中的姿态估计原工程文件,如果不知道怎样在本地克隆Pycharm,可以接着往下看,

    2024年01月17日
    浏览(64)
  • 【一步步开发AI运动小程序】十一、人体关键点跳跃追踪

    随着人工智能技术的不断发展,阿里体育等IT大厂,推出的“乐动力”、“天天跳绳”AI运动APP,让 云上运动会、线上运动会、健身打卡、AI体育指导 等概念空前火热。那么,能否将这些在APP成功应用的场景搬上小程序,分享这些概念的红利呢?本系列文章就带您一步一步从

    2024年02月07日
    浏览(59)
  • yolov8-pose:在yolov8上添加人体关键点检测

        最近因为工作关系接触了yolo-pose,1月份yolov8也出来了,就想着能不能在yolov8上也加上pose分支,也算加深对网络的认识。     yolov8在数据处理上也考虑了keypoints的,所以数据处理部分不用太多的修改,主要修改了Detect类、Loss类。     Detect类:__init__方法中加入nkpt以及c

    2024年02月11日
    浏览(42)
  • YOLOv8 人体姿态估计(关键点检测) python推理 && ONNX RUNTIME C++部署

    目录   1、下载权重 ​编辑2、python 推理 3、转ONNX格式 4、ONNX RUNTIME C++ 部署 utils.h utils.cpp detect.h detect.cpp main.cpp CmakeList.txt 我这里之前在做实例分割的时候,项目已经下载到本地,环境也安装好了,只需要下载pose的权重就可以 输出:   用netron查看一下:  如上图所是,YOLO

    2024年02月07日
    浏览(44)
  • OpenMMLab-AI实战营第二期——2-1.人体关键点检测与MMPose

    视频链接:B站-人体关键点检测与MMPose 关键点提取,属于模式识别 人体姿态估计的下游任务:行为识别(比如:拥抱。。) 下游任务:CG和动画,这个是最常见的应用 下游任务:人机交互(手势识别,依据收拾做出不同的响应,比如:HoloLens会对五指手势(3D)做出不同的反

    2024年02月11日
    浏览(39)
  • 【mmpose】从openmmlab官方文档看mmpose架构设计,模块组成,快速上手实现关键点检测效果(动物,人体,手部等)

    MMPOSE 架构设计 MMPose 1.0 与之前的版本有较大改动,对部分模块进行了重新设计和组织,降低代码冗余度,提升运行效率,降低学习难度。使用 MMPose 1.0 时开发者会关心的内容: 整体代码架构与设计逻辑; 如何用config文件管理模块; 如何使用自定义数据集; 如何添加新的模

    2024年02月08日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包