【论文阅读】 Model Sparsity Can Simplify Machine Unlearning

这篇具有很好参考价值的文章主要介绍了【论文阅读】 Model Sparsity Can Simplify Machine Unlearning。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

背景

Machine Unlearning(MU)是指出于对数据隐私保护的目的以及对"RTBF"(right to be forgotten)等数据保护方案的响应,而提出的一种数据遗忘的方法。在现实中,用户有权请求数据收集者删除其个人数据,但是仅将用户数据从数据集中删除是不够的。 原因:对model的攻击,比如成员推理攻击(membership inference attack,MIA),模型反演攻击等,能够从model反推出训练数据集的信息。 如果model A是用完整的数据集训练的,那么将用户信息从数据集中删除的同时,还需要从model A中抹除用户的数据信息。
对MU分类,可以分为exact unlearning和approximate unlearning。

  • 前者即利用删除部分数据后的剩余数据集(Dr)重新训练(Retrain),得到一个新的model,因为这个model的训练并没有用到被删除的数据(Df),自然不包含Df的信息。因此通过Retain得到的model被认为是gold-standard retrained model 。 但是重训练需要很高的计算成本、时间成本,因为在模型较大、数据集较大的情况下,训练一个model是需要耗费很多计算资源,并需要很长时间的。因为仅删除几条用户数据,就直接重新训练一个model是不实际的。
  • 因此有了后者,近似MU。近似二字体现出这类MU方法在遗忘的程度和计算成本等上一个trade-off。近似遗忘是指通过其他的方法,比如influence function(也是newton step)去更新模型参数,使得模型不必耗费大量计算资源去重训练,而大致从模型中,抹除Df的信息。
    实际上,在近似MU的过程中,比如利用influence function,或者fasher information matrix去更新模型参数的过程中,涉及到对模型参数的hessian matrix求逆的操作(hessian matrix就是二阶偏导),如果模型参数量很大,比如百万个参数,那么这些操作的计算量依旧是很大的。 因此为了降低计算量,在基于influence function的放上上又有很多优化,涉及很多理论的推导。

主要内容

论文链接:Model Sparsity Can Simplify Machine Unlearning
这篇论文的核心内容是,使用model sparsity,缩小approximate MU和exact MU之间的gap。这篇论文的model sparsity就是利用pruning,得到稀疏的模型,再去做MU,即先prune,再unlearn。主要内容如下:

Contribution Ⅰ:对Machine Unlearning的一个全面的理解

本文将approximate MU分为了以下四类:

  • Fine-tuning(FT):把原来的model θ.在剩余数据集Dr微调少量的epochs,得到unlearning后的model θu。这个过程是希望能够通过在Dr上微调以启动 catastrophic forgetting(即在增量学习、连续学习的过程中,在另外个任务上微调model参数的时候,model就忘掉了在之前任务上学到的东西),使得模型遗忘掉Df的信息(因为原始数据集是Dr+Df)。
  • Gradient ascent (GA):模型训练过程中,模型参数是在往loss减小的方向移动,现在针对Df里面的数据集,将模型参数往在Df上数据点上的loss增大的方向移动。
  • Influence unlearning(IU):使用influence function来表示数据点对模型参数w的影响。但是这个方法仅使用删除的数据Df不大的情况。因为influence function中用到了first-order Taylor expansion,如果数据集变化较大的话,这个近似就不准确了。
  • Fisher fogetting(FF):这个方法主要是用到了fisher information matrix(FIM)……【这个方法相关的论文我没看懂】……FIM的计算量也是很大的。

这篇论文也提到,MU性能的评估指标有很多方面,再related works中各个approximate MU使用的评估指标不仅相同,也不全面,有些方法在metric A下性能可以,但在metric B下就不太优秀;而某些方法则相反。因此这篇论文希望对MU有一个全面的评估:

  • Unlearning accuracy (UA):属于反映unlearning efficacy的指标。UA(θu) = 1 - AccDf(θu)。就是unlearn后的model θu对遗忘数据Df的inference accuracy。AccDf(θu)越小越好,因此UA越大越好。
  • Membership inference attack(MIA)on Df:MIA-efficacy是指Df中有多少样本被MIA预测为unlearn后的model θu的non-training samples。MIA-efficacy越大越好。
  • Remaining accuracy(RA):unlearn后的model θu在Dr上的inference accuracy。属于fidelity of MU。越大越好。
  • Test accuracy(TA):unlearn后的model θu在test dataset(不是Df也不是Dr,是一个新的用于测试的数据集)上的inference accuracy,反应了unlearn后的model θu的generalization。
  • Run-time efficiency(RTE):以retrain为baseline,看approximate MU在计算上有多少加速。

Contribution Ⅱ:说明model sparsity对Machine Unlearning的好处

model sparsity,其实就是给model的参数上✖一个mask(m),保留的wi对应mi=1,不保留的wj对应mj=0。这里先给出了基于gradient ascent的MU方法的unlearning error+model sparsity的理论分析(proposition 2):【论文阅读】 Model Sparsity Can Simplify Machine Unlearning,论文阅读,论文阅读,unlearning,CV,pruning
θt是迭代更新θ过程中的某个结果,θ0是初始的model。因为mask m只有很少的项为1,因此m使得unlearning error减少了。
之后通过实验,在上面的4中approximate MU方法上,验证model sparsity对MU是有好处的,尤其是针对FT,随着sparsity rate的增加,efficacy上(UA、MIA)有很大的提升:
【论文阅读】 Model Sparsity Can Simplify Machine Unlearning,论文阅读,论文阅读,unlearning,CV,pruning
这里的实验是基于one-shot magnitude pruning(OMP)的。

Pruning方法的选择

这篇论文提到的主要方法是:先pruning,再unlearn。那么用什么pruning的方法呢?提到了三个criteria:①least dependence on the forgetting dataset (Df);因为最终是要移除model中包含的Df的信息,如果pruning的过程中过多的依赖Df的信息,那么sparse model中还是有很多Df的信息; ② lossless generalization when pruning;这个是希望pruning尽可能小的影响到TA;③ pruning efficiency,这个是希望尽可能小的影响到RTE,需要高效的pruning方法。 最终列出了三种:SynFlow (synaptic flow pruning),OMP (one-shot magnitude pruning),IMP。最终是用了SynFlow和OMP,因为这两个更优:
【论文阅读】 Model Sparsity Can Simplify Machine Unlearning,论文阅读,论文阅读,unlearning,CV,pruning
OMP和SynFlow在95% sparsity的时候,相对Dense模型,TA有所下降,但是UA提高很多。IMP则是TA有所上升,但是UA下降了。因此最终选择了OMP和SynFlow。因为IMP这个pruning方法对training dataset是强依赖的。

sparse-aware的unlearning framework

前面提到的都是先pruning再unlearn,后面文章提到pruning和unlearning同时进行,在unlearning的目标函数中引入一项L1-norm sparse regularization,最终MU的目标函数如下:
【论文阅读】 Model Sparsity Can Simplify Machine Unlearning,论文阅读,论文阅读,unlearning,CV,pruning
||θ||1越小的话,model也就越稀疏。这里的γ,是这个正则化项的权重,文章给了三种方案极其实验结果,最后说明“use of a linearly decreasing γ scheduler outperforms other schemes.”
【论文阅读】 Model Sparsity Can Simplify Machine Unlearning,论文阅读,论文阅读,unlearning,CV,pruning

Experiments

Model sparsity improves approximate unlearning

两种unlearning scenario:class-wise(Df consisting of training data points of an entire class)的和random datapoints(10% of the whole training dataset together)。
【论文阅读】 Model Sparsity Can Simplify Machine Unlearning,论文阅读,论文阅读,unlearning,CV,pruning
没一纵列,右边的和左边的对比,括号里是与Retain这个gold-standard的对比,数字越小越好。所以文章提出的先pruning能够boost MU performance。

Effectiveness of sparsity-aware unlearning

实验验证文章提出的pruning和unlearning同时进行的sparsity-aware unlearning方法效果:在class-wise forgetting和random data forgetting两个scenario下,与基于Fine-tuning的MU方法和Retain,在五个metric下对比:
【论文阅读】 Model Sparsity Can Simplify Machine Unlearning,论文阅读,论文阅读,unlearning,CV,pruning
蓝线即提出的方法,简直是五边形战士!(但是和FT比有点取巧了吧hhhhFT在dense model上性能本来就不行)。

Application: MU for Trojan model cleanse.

用MU遗忘掉adversarial examples的信息,可以实现后门的移除:
【论文阅读】 Model Sparsity Can Simplify Machine Unlearning,论文阅读,论文阅读,unlearning,CV,pruning
sparsity rate增加,unlearning后的model的ASR明显下降,同时standard accuracy降低不多。

Application: MU to improve transfer learning.

transfer learning是指在一个领域上学习好的较大的model,换一个领域的数据集微调最后分类相关的层就能继续用。但是原始的数据集,可能其中一些类对模型迁移影响是负面的,那么如果把这些类移除后训练的model迁移性更好。那么可以考虑用MU先将一些类的信息从model中移除,再transfer learning:
【论文阅读】 Model Sparsity Can Simplify Machine Unlearning,论文阅读,论文阅读,unlearning,CV,pruning
可见本文的方法,与参考方法相比,在两个数据集上的迁移Acc都有所增加,但是Time更少。文章来源地址https://www.toymoban.com/news/detail-661996.html

到了这里,关于【论文阅读】 Model Sparsity Can Simplify Machine Unlearning的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ChatGLM基座:GLM(General Language Model)论文阅读笔记

    现在有很多Pretrain model 的架构, 如Bert、GPT、T5等,但是当时没有一种模型能在NLU、有条件文本生成、无条件文本生成都有很好的表现。 一般预训练模型架构分为三种:自回归(GPT系列)、自编码(Bert系列)、编码器-解码器(T5)。 作者概述了它们目前存在的问题·: GPT:单

    2024年02月02日
    浏览(30)
  • 论文阅读 - Learning Human Interactions with the Influence Model

    NIPS\\\'01 早期模型 要求知识背景: 似然函数,极大似然估计、HMM、期望最大化 目录 1 Introduction 2 The Facilitator Room 3 T h e I n f l u e n c e M o d e l 3 . 1 ( R e ) i n t r o d u c i n g t h e I n f l u e n c e M o d e l 3 . 2 L e a r n i n g f o r t h e I n f l u e n c e M o d e l 3. 2. 1 期望——影响力最大化模型 3

    2024年02月07日
    浏览(33)
  • 论文阅读:TinySAM: Pushing the Envelope for Efficient Segment Anything Model-文章内容阅读

    论文标题: TinySAM: 极致高效的分割一切模型 论文地址:https://arxiv.org/pdf/2312.13789.pdf 代码地址(pytorch):https://github.com/xinghaochen/TinySAM 详细论文解读:TinySAM:极致高效压缩,手机就能实时跑的分割一切模型 - 知乎 (zhihu.com)  目录 文章内容解析  概括 文章的观点 技术创新解

    2024年01月17日
    浏览(39)
  • 论文阅读:Diffusion Model-Based Image Editing: A Survey

    论文链接 GitHub仓库 这篇文章是一篇基于扩散模型(Diffusion Model)的图片编辑(image editing)方法综述。作者从多个方面对当前的方法进行分类和分析,包括学习策略、用户输入、和适用的任务等。为了进一步评估文本引导的图片编辑算法,作者提出了一个新的基准,EditEval,

    2024年04月10日
    浏览(30)
  • Feature Prediction Diffusion Model for Video Anomaly Detection 论文阅读

    文章标题:Feature Prediction Diffusion Model for Video Anomaly Detection 文章信息: 发表于:ICCV 2023 原文链接:https://openaccess.thecvf.com/content/ICCV2023/papers/Yan_Feature_Prediction_Diffusion_Model_for_Video_Anomaly_Detection_ICCV_2023_paper.pdf 源代码:https://github.com/daidaidouer/FPDM 在视频异常检测是一个重要的研

    2024年01月17日
    浏览(42)
  • 论文阅读--EFFICIENT OFFLINE POLICY OPTIMIZATION WITH A LEARNED MODEL

    作者:Zichen Liu, Siyi Li, Wee Sun Lee, Shuicheng YAN, Zhongwen Xu 论文链接:Efficient Offline Policy Optimization with a Learned Model | OpenReview 发表时间:  ICLR   2023年1月21日  代码链接:https://github.com/sail-sg/rosmo MuZero的离线版本算法(MuZero Unplugged)为基于日志数据的离线策略学习提供了一种很

    2024年02月03日
    浏览(36)
  • 论文阅读《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》

    就上一篇博客如何写论文、读(分享汇报)论文,在《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》进行实践。 《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》是一篇由Mingxing Tan和Quoc V. Le等人于2019年提出的论文,主要关注卷积神经网络(CNN)的模型缩

    2024年02月03日
    浏览(34)
  • 《Hierarchical Sequence Labeling Model for Aspect Sentiment Triplet Extraction》论文阅读

    文章地址: https://link.springer.com/chapter/10.1007/978-3-030-60450-9_52   在这篇文章中作者提出了一个继承性的序列标注模型( hierarchical sequence labeling model, HSLM)以端到端的方式识别文本语句中所含有的方面级情感三元组(ASTE)。该模型主要有三个部分组成:方面级序列标注模块、

    2024年01月16日
    浏览(93)
  • 【论文阅读】Can Large Language Models Empower Molecular Property Prediction?

    作者:Chen Qian, Huayi Tang, Zhirui Yang 文章链接:Can Large Language Models Empower Molecular Property Prediction? 代码链接:Can Large Language Models Empower Molecular Property Prediction?  分子属性预测得到巨大的关注,分子图能够被描述为图结构的数据或SMILES (Simplified Molecular-Input Line-Entry System)文本。L

    2024年01月20日
    浏览(45)
  • 【论文阅读】DQnet: Cross-Model Detail Querying for Camouflaged Object Detection

    DQnet:伪装目标检测中的跨模型细节查询 论文地址:https://arxiv.org/abs/2212.08296 这篇文章提出了一个交叉模型框架(CNN-Transformer并行)来检测伪装目标 出发点还是:CNN局部感知,感受野受限 ,Transformer全局信息丰富但细节信息不足。希望结合二者优势 这个思路目前做的挺多的

    2024年02月16日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包