opencv校正图像

这篇具有很好参考价值的文章主要介绍了opencv校正图像。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


1、前言

我们用相机拍照时,会因为角度问题造成拍歪,会影响图像的识别,这时就需要对图像进行校正,下面介绍校正图像的一种方式,可以用来校正简单的图像,如文字信息、工件等。
校正的过程可以分为以下几步:
1、转灰度图。
2、降噪。
3、Canny边缘检测。
4、膨胀。
5、轮廓检索。
6、从各个轮廓中选取合适的旋转角度并校正图像。
总体的思路是获取图像中各个特征的轮廓旋转角度,从中选取合适的角度让原图像进行逆旋转,达到校准目的。
方法参考:https://blog.csdn.net/DU_YULIN/article/details/120504660

2、例程

2.1、代码

#include <opencv2/core.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>

using namespace cv;
using namespace std;

int main() {
    Mat src = imread("./test5.jpg");
    imshow("src", src);

    /* 转灰度图 */
    Mat gray;
    cvtColor(src, gray, COLOR_BGR2GRAY);
    imshow("gray", gray);

    /* 高斯模糊降噪,避免环境中的花纹影响边缘检测 */
    Mat blur;
    GaussianBlur(gray, blur, Size(5, 5), 1.0);
    imshow("gaussianBlur", blur);

    /* Canny边缘检测 */
    Mat canny;
    Canny(blur, canny, 20, 100);
    imshow("canny", canny);

    /* 膨胀两次,膨胀是为了让文字连到一块,轮廓数,提高效率,可以按需求调整膨胀的大小 */
    Mat kernel = getStructuringElement(MORPH_RECT, Size(4, 2));
    Mat expand;
    dilate(canny, expand, kernel, Point(-1, -1), 2);
    imshow("dialate", expand);

    /* 检索轮廓 */
    vector<vector<Point>> contours;
    findContours(expand, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);

    /* 对各个轮廓的旋转角度进行排序 */
    std::vector<float> vecAngles;
    for (int i = 0; i < contours.size(); i++) {
        RotatedRect rr = minAreaRect(contours[i]);
        vecAngles.push_back(rr.angle);
    }
    std::sort(vecAngles.begin(), vecAngles.end());

    /* 以中间值为基准,取相差20%以内的角度的平均值作为结果 */
    float midIndex = int(vecAngles.size() / 2) - 1;
    float midAngle = vecAngles[midIndex];
    float maxAngleThreshold = midAngle > 0 ? midAngle - 15 : midAngle + 15;
    float minAngleThreshold = midAngle > 0 ? midAngle + 15 : midAngle - 15;
    float angleSum = 0;
    int angleCounter = 0;
    cout << "maxAngleThreshold:" << maxAngleThreshold << endl;
    cout << "minAngleThreshold:" << minAngleThreshold << endl;
    for (auto angle : vecAngles) {
        cout << angle << endl;
        if (angle > minAngleThreshold && angle < maxAngleThreshold) {
            angleSum += angle;
            angleCounter++;
        }
    }
    float averageAngle = angleSum / angleCounter;
    cout << "averageAngle:" << averageAngle << endl;
    cout << "midAngle:" << midAngle << endl;

    /* 旋转图像 */
    Mat result;
    Mat rotateM = getRotationMatrix2D(Point2f(gray.cols / 2.0, gray.rows / 2.0), averageAngle, 1.0);
    warpAffine(src, result, rotateM, gray.size(), INTER_LINEAR, BORDER_CONSTANT, Scalar(255, 255, 255));
    imshow("result", result);
  	waitKey(0);
}

2.2、效果

口罩

opencv图像矫正,C++ Opencv,opencv,c++,图像校正opencv图像矫正,C++ Opencv,opencv,c++,图像校正

说明书

opencv图像矫正,C++ Opencv,opencv,c++,图像校正
opencv图像矫正,C++ Opencv,opencv,c++,图像校正

网页

opencv图像矫正,C++ Opencv,opencv,c++,图像校正

3、按步骤分析

3.1、转灰度图

Mat gray;
cvtColor(src, gray, COLOR_BGR2GRAY);
imshow("gray", gray);

我们平时看的图片都是由RGB来描述颜色的,RGB有三个值,而灰度图只有一个灰度值,转换为灰度图可以减少计算量。

3.2、降噪 + Canny边缘检测

/* 高斯模糊降噪,避免环境中的花纹影响边缘检测 */
Mat blur;
GaussianBlur(gray, blur, Size(5, 5), 1.0);
imshow("gaussianBlur", blur);

/* Canny边缘检测 */
Mat canny;
Canny(blur, canny, 20, 100);
imshow("canny", canny);

降噪是为Canny边缘检测做准备,相机拍出来的照片会有很多多余的特征,这些会影响到边缘检测的结果,通过降噪可以把不明显的特征去掉。
比如这张图片,我们需要校正的只有中间的文字部分。
opencv图像矫正,C++ Opencv,opencv,c++,图像校正
如果不进行降噪,Canny边缘检测的结果会是这样,存在多余的特征,可能会影响到最后的结果。
opencv图像矫正,C++ Opencv,opencv,c++,图像校正
降噪后把最明显特征留了下来,提高准确度。
opencv图像矫正,C++ Opencv,opencv,c++,图像校正

3.3、膨胀(可视具体情况省略)

/* 膨胀两次,膨胀是为了让文字连到一块,轮廓数,提高效率,可以按需求调整膨胀的大小 */
Mat kernel = getStructuringElement(MORPH_RECT, Size(4, 2));
Mat expand;
dilate(canny, expand, kernel, Point(-1, -1), 2);
imshow("dialate", expand);

如上图所示,Canny算法查找到了很多组轮廓,但有时候我们其实不需要太多细节上的轮廓,只需要一个能描述整体的轮廓,这时候用膨胀就可以把这些细节的轮廓组合到一起,这样做的好处是可以减少计算量,而且整体的轮廓比细节轮廓更有代表性。
opencv图像矫正,C++ Opencv,opencv,c++,图像校正

3.4、轮廓检索

/* 检索轮廓 */
vector<vector<Point>> contours;
findContours(expand, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);

opencv提供了findContours可以获取图像中的轮廓位置及其旋转角度。

3.5、选取角度

选取角度的方法有很多,可以视情况选择,我这里针对不同场景,提供两种方法。

3.5.1、取平均值

如果要校正文本信息,那么需要获取的是图像整体轮廓的偏移角度,所以可以采取取平均值的方式,例程如下。
过程是先排序,取中间值,避开一些过大或过小的角度,取中间值前后15度的所有角度作为有效角度,通过有效角度的平均值来确定最终的校准结果。

为什么不直接用中间值?直接使用中间值会存在一些特殊情况,比如角度序列:0、31、31、36、90、90。中间值的选取,取决于过大、或过小角度的数量,从序列选中可以看到,偏移角度显然是倾向于31方向的,而结果却是36,所以有时结果偏差比较大。

/* 对各个轮廓的旋转角度进行排序 */
vector<float> vecAngles;
for (int i = 0; i < contours.size(); i++) {
	RotatedRect r = minAreaRect(contours[i]);
	vecAngles.push_back(r.angle);
}
sort(vecAngles.begin(), vecAngles.end());

/* 以中间值为基准,取相差20%以内的角度的平均值作为结果 */
float midIndex = int(vecAngles.size() / 2) - 1;
float midAngle = vecAngles[midIndex];
float maxAngleThreshold = midAngle > 0 ? midAngle - 15 : midAngle + 15;
float minAngleThreshold = midAngle > 0 ? midAngle + 15 : midAngle - 15;
float angleSum = 0;
int angleCounter = 0;
for (auto angle : vecAngles) {
	if (angle > minAngleThreshold && angle < maxAngleThreshold) {
		angleSum += angle;
		angleCounter++;
	}
}
float averageAngle = angleSum / angleCounter;

3.5.2、以最大面积为准

如果要校正的是一些工件之类的,比如前面示例里的口罩,轮廓面积占比比较大的,可以通过判断轮廓面积大小来确定角度。
opencv图像矫正,C++ Opencv,opencv,c++,图像校正
例程:

float angleResult = 0;
float maxArea = 0;
for (int i = 0; i < contours.size(); i++) {
	auto cnt = contours[i];
    auto area = contourArea(cnt );
    if (maxArea < area) {
		maxArea = area;
		RotatedRect r = minAreaRect(contours[i]);
		angleResult = r.angle;
    }
}

效果比平均值好一些。
opencv图像矫正,C++ Opencv,opencv,c++,图像校正文章来源地址https://www.toymoban.com/news/detail-662115.html

到了这里,关于opencv校正图像的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV实战之三 | 基于OpenCV实现图像校正

    前言 在机器视觉中,对于图像存在ROI区域倾斜现象,我们需要将其校正为正确的角度视角,方便下一步的布局分析与文字识别,通过透视变换可以取得比较好的裁剪效果。 ⭐ 基于轮廓提取和透射变换的矫正算法更适用于 车牌 、 身份证 、 人民币 、 书本 、 发票 一类矩形形

    2024年02月03日
    浏览(37)
  • opencv校正图像

    我们用相机拍照时,会因为角度问题造成拍歪,会影响图像的识别,这时就需要对图像进行校正,下面介绍校正图像的一种方式,可以用来校正简单的图像,如文字信息、工件等。 校正的过程可以分为以下几步: 1、转灰度图。 2、降噪。 3、Canny边缘检测。 4、膨胀。 5、轮廓

    2024年02月12日
    浏览(41)
  • 使用opencv实现图像的扭曲矫正

    在图像处理中,经常需要对图像进行各种操作如平移、缩放、旋转、翻转等,这些都是图像的仿射变换。图像仿射变换又称为图像仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。通常图像的旋转加上拉升就是图像仿射变换

    2024年01月17日
    浏览(48)
  • OpenCV实现“全能扫描王”的图像矫正功能

    相信很多人手机里都装了个“扫描全能王”APP,平时可以用它来可以扫描一些证件、文本,确实很好用,第一次用的时候确实感觉功能很强大啊算法很牛逼啊。但是仔细一想,其实这些实现起来也是很简单的,我想了下,实现的步骤应该就只有下面三个: 将证件轮廓找到 提

    2024年02月08日
    浏览(57)
  • Python OpenCV 图像矫正的原理与实现

    目录hw1下的图像是一些胶片的照片,请将其进行度量矫正。 推荐流程:采用 Canny算子 ,检测边缘点;采用 Hough直线检测 ,根据边缘点检测胶片边缘对应的4条直线;4条直线在图像平面中的交点为胶片图像的4个顶点。根据4个顶点与真实世界中胶片的位置(假设胶片图像长宽比

    2024年02月16日
    浏览(39)
  • Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之六 简单图像倾斜校正处理效果

    目录 Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单实战案例 之六 简单图像倾斜校正处理效果 一、简单介绍 二、简单图像倾斜校正处理效果实现原理 三、简单图像倾斜校正处理效果案例实现简单步骤 四、注意事项 Python是一种跨平台的计算机程序设计语言。是一种面向对

    2024年04月13日
    浏览(62)
  • 在 Python 中使用 OpenCV 通过透视校正转换图像

    在计算机视觉和图像处理领域,透视变换是一个强大的工具。它允许我们改变图像的视角以获得新的视点,通常用于校正扭曲或模拟不同的相机角度。本文将探讨一个 Python 脚本,该脚本使用计算机视觉领域流行的 OpenCV 库对图像执行透视变换。我们将详细介绍该脚本的工作原

    2024年01月25日
    浏览(43)
  • opencv对相机进行畸变矫正,及从矫正后的图像坐标反求原来的对应坐标

    目前有个项目,需要用到热成像相机。但是这个热成像相机它的畸变比较厉害,因此需要用标定板进行标定,从而消除镜头畸变。 同时需要实现用户用鼠标点击校正后的画面后,显示用户点击位置的像素所代表的温度。 另外热成像sdk中还有个功能:选定一个rect,可以返回这

    2024年02月16日
    浏览(52)
  • 基于OpenCV-Python的图像位置校正和版面分析

    使用opencv对图像进行操作,要求:(1)定位银行票据的四条边,然后旋正。(2)根据版面分析,分割出小写金额区域。 首先是对图像的校正 读取图片 对图片二值化 进行边缘检测 对边缘的进行霍夫曼变换 将变换结果从极坐标空间投影到笛卡尔坐标得到倾斜角 根据倾斜角对

    2024年01月19日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包