基于Pytorch实现的声纹识别系统

这篇具有很好参考价值的文章主要介绍了基于Pytorch实现的声纹识别系统。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对应项目中的AAMLoss,对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接,除此之外,还支持AMLoss、ARMLoss、CELoss等多种损失函数。

源码地址:VoiceprintRecognition-Pytorch

使用环境:

  • Anaconda 3
  • Python 3.8
  • Pytorch 1.13.1
  • Windows 10 or Ubuntu 18.04

项目特性

  1. 支持模型:EcapaTdnn、TDNN、Res2Net、ResNetSE、ERes2Net、CAM++
  2. 支持池化层:AttentiveStatsPool(ASP)、SelfAttentivePooling(SAP)、TemporalStatisticsPooling(TSP)、TemporalAveragePooling(TAP)、TemporalStatsPool(TSTP)
  3. 支持损失函数:AAMLoss、AMLoss、ARMLoss、CELoss
  4. 支持预处理方法:MelSpectrogram、Spectrogram、MFCC、Fbank

模型论文:

  • EcapaTdnn:ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification
  • PANNS:PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition
  • TDNN:Prediction of speech intelligibility with DNN-based performance measures
  • Res2Net:Res2Net: A New Multi-scale Backbone Architecture
  • ResNetSE:Squeeze-and-Excitation Networks
  • CAMPPlus:CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking
  • ERes2Net:An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification

模型下载

训练CN-Celeb数据,共有2796个说话人。

模型 Params(M) 预处理方法 数据集 train speakers threshold EER MinDCF 模型下载
CAM++ 6.8 Fbank CN-Celeb 2796 0.26 0.09557 0.53516 加入知识星球获取
ERes2Net 6.6 Fbank CN-Celeb 2796 0.19 0.09980 0.52352 加入知识星球获取
ResNetSE 7.8 Fbank CN-Celeb 2796 0.20 0.10149 0.55185 加入知识星球获取
EcapaTdnn 6.1 Fbank CN-Celeb 2796 0.24 0.10163 0.56543 加入知识星球获取
TDNN 2.6 Fbank CN-Celeb 2796 0.23 0.12182 0.62141 加入知识星球获取
Res2Net 5.0 Fbank CN-Celeb 2796 0.22 0.14390 0.67961 加入知识星球获取
CAM++ 6.8 Fbank 更大数据集 2W+ 0.33 0.07874 0.52524 加入知识星球获取
ERes2Net 55.1 Fbank 其他数据集 20W+ 0.36 0.02936 0.18355 加入知识星球获取
CAM++ 6.8 Fbank 其他数据集 20W+ 0.29 0.04765 0.31436 加入知识星球获取

说明:

  1. 评估的测试集为CN-Celeb的测试集,包含196个说话人。
  2. 使用语速增强分类大小翻三倍speed_perturb_3_class: True
  3. 参数数量不包含了分类器的参数数量。

训练VoxCeleb1&2数据,共有7205个说话人。

模型 Params(M) 预处理方法 数据集 train speakers threshold EER MinDCF 模型下载
CAM++ 6.8 Fbank VoxCeleb1&2 7205 0.23 0.02659 0.18604 加入知识星球获取
ERes2Net 6.6 Fbank VoxCeleb1&2 7205 0.23 0.03648 0.25508 加入知识星球获取
ResNetSE 7.8 Fbank VoxCeleb1&2 7205 0.23 0.03668 0.27881 加入知识星球获取
EcapaTdnn 6.1 Fbank VoxCeleb1&2 7205 0.26 0.02610 0.18008 加入知识星球获取
TDNN 2.6 Fbank VoxCeleb1&2 7205 0.26 0.03963 0.31433 加入知识星球获取
Res2Net 5.0 Fbank VoxCeleb1&2 7205 0.20 0.04290 0.41416 加入知识星球获取
CAM++ 6.8 Fbank 更大数据集 2W+ 0.28 0.03182 0.23731 加入知识星球获取
ERes2Net 55.1 Fbank 其他数据集 20W+ 0.53 0.08904 0.62130 加入知识星球获取
CAM++ 6.8 Fbank 其他数据集 20W+ 0.49 0.10334 0.71200 加入知识星球获取

说明:

  1. 评估的测试集为VoxCeleb1&2的测试集,包含158个说话人。
  2. 使用语速增强分类大小翻三倍speed_perturb_3_class: True
  3. 参数数量不包含了分类器的参数数量。

安装环境

  • 首先安装的是Pytorch的GPU版本,如果已经安装过了,请跳过。
conda install pytorch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 pytorch-cuda=11.6 -c pytorch -c nvidia
  • 安装ppvector库。

使用pip安装,命令如下:

python -m pip install mvector -U -i https://pypi.tuna.tsinghua.edu.cn/simple

建议源码安装,源码安装能保证使用最新代码。

git clone https://github.com/yeyupiaoling/VoiceprintRecognition-Pytorch.git
cd VoiceprintRecognition-Pytorch/
python setup.py install

创建数据

本教程笔者使用的是CN-Celeb,这个数据集一共有约3000个人的语音数据,有65W+条语音数据,下载之后要解压数据集到dataset目录,另外如果要评估,还需要下载CN-Celeb的测试集。如果读者有其他更好的数据集,可以混合在一起使用,但最好是要用python的工具模块aukit处理音频,降噪和去除静音。

首先是创建一个数据列表,数据列表的格式为<语音文件路径\t语音分类标签>,创建这个列表主要是方便之后的读取,也是方便读取使用其他的语音数据集,语音分类标签是指说话人的唯一ID,不同的语音数据集,可以通过编写对应的生成数据列表的函数,把这些数据集都写在同一个数据列表中。

执行create_data.py程序完成数据准备。

python create_data.py

执行上面的程序之后,会生成以下的数据格式,如果要自定义数据,参考如下数据列表,前面是音频的相对路径,后面的是该音频对应的说话人的标签,就跟分类一样。自定义数据集的注意,测试数据列表的ID可以不用跟训练的ID一样,也就是说测试的数据的说话人可以不用出现在训练集,只要保证测试数据列表中同一个人相同的ID即可。

dataset/CN-Celeb2_flac/data/id11999/recitation-03-019.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-023.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-025.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-04-014.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-030.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-032.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-06-028.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-031.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-05-003.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-04-017.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-10-016.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-09-001.flac      2795
dataset/CN-Celeb2_flac/data/id11999/recitation-05-010.flac      2795

修改预处理方法

配置文件中默认使用的是Fbank预处理方法,如果要使用其他预处理方法,可以修改配置文件中的安装下面方式修改,具体的值可以根据自己情况修改。如果不清楚如何设置参数,可以直接删除该部分,直接使用默认值。

# 数据预处理参数
preprocess_conf:
  # 音频预处理方法,支持:MelSpectrogram、Spectrogram、MFCC、Fbank
  feature_method: 'Fbank'
  # 设置API参数,更参数查看对应API,不清楚的可以直接删除该部分,直接使用默认值
  method_args:
    sample_frequency: 16000
    num_mel_bins: 80

训练模型

使用train.py训练模型,本项目支持多个音频预处理方式,通过configs/ecapa_tdnn.yml配置文件的参数preprocess_conf.feature_method可以指定,MelSpectrogram为梅尔频谱,Spectrogram为语谱图,MFCC梅尔频谱倒谱系数等等。通过参数augment_conf_path可以指定数据增强方式。训练过程中,会使用VisualDL保存训练日志,通过启动VisualDL可以随时查看训练结果,启动命令visualdl --logdir=log --host 0.0.0.0

# 单卡训练
CUDA_VISIBLE_DEVICES=0 python train.py
# 多卡训练
CUDA_VISIBLE_DEVICES=0,1 torchrun --standalone --nnodes=1 --nproc_per_node=2 train.py

训练输出日志:

[2023-08-05 09:52:06.497988 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-08-05 09:52:06.498094 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-08-05 09:52:06.498149 INFO   ] utils:print_arguments:15 - do_eval: True
[2023-08-05 09:52:06.498191 INFO   ] utils:print_arguments:15 - local_rank: 0
[2023-08-05 09:52:06.498230 INFO   ] utils:print_arguments:15 - pretrained_model: None
[2023-08-05 09:52:06.498269 INFO   ] utils:print_arguments:15 - resume_model: None
[2023-08-05 09:52:06.498306 INFO   ] utils:print_arguments:15 - save_model_path: models/
[2023-08-05 09:52:06.498342 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-08-05 09:52:06.498378 INFO   ] utils:print_arguments:16 - ------------------------------------------------
[2023-08-05 09:52:06.513761 INFO   ] utils:print_arguments:18 - ----------- 配置文件参数 -----------
[2023-08-05 09:52:06.513906 INFO   ] utils:print_arguments:21 - dataset_conf:
[2023-08-05 09:52:06.513957 INFO   ] utils:print_arguments:24 -         dataLoader:
[2023-08-05 09:52:06.513995 INFO   ] utils:print_arguments:26 -                 batch_size: 64
[2023-08-05 09:52:06.514031 INFO   ] utils:print_arguments:26 -                 num_workers: 4
[2023-08-05 09:52:06.514066 INFO   ] utils:print_arguments:28 -         do_vad: False
[2023-08-05 09:52:06.514101 INFO   ] utils:print_arguments:28 -         enroll_list: dataset/enroll_list.txt
[2023-08-05 09:52:06.514135 INFO   ] utils:print_arguments:24 -         eval_conf:
[2023-08-05 09:52:06.514169 INFO   ] utils:print_arguments:26 -                 batch_size: 1
[2023-08-05 09:52:06.514203 INFO   ] utils:print_arguments:26 -                 max_duration: 20
[2023-08-05 09:52:06.514237 INFO   ] utils:print_arguments:28 -         max_duration: 3
[2023-08-05 09:52:06.514274 INFO   ] utils:print_arguments:28 -         min_duration: 0.5
[2023-08-05 09:52:06.514308 INFO   ] utils:print_arguments:28 -         noise_aug_prob: 0.2
[2023-08-05 09:52:06.514342 INFO   ] utils:print_arguments:28 -         noise_dir: dataset/noise
[2023-08-05 09:52:06.514374 INFO   ] utils:print_arguments:28 -         num_speakers: 3242
[2023-08-05 09:52:06.514408 INFO   ] utils:print_arguments:28 -         sample_rate: 16000
[2023-08-05 09:52:06.514441 INFO   ] utils:print_arguments:28 -         speed_perturb: True
[2023-08-05 09:52:06.514475 INFO   ] utils:print_arguments:28 -         target_dB: -20
[2023-08-05 09:52:06.514508 INFO   ] utils:print_arguments:28 -         train_list: dataset/train_list.txt
[2023-08-05 09:52:06.514542 INFO   ] utils:print_arguments:28 -         trials_list: dataset/trials_list.txt
[2023-08-05 09:52:06.514575 INFO   ] utils:print_arguments:28 -         use_dB_normalization: True
[2023-08-05 09:52:06.514609 INFO   ] utils:print_arguments:21 - loss_conf:
[2023-08-05 09:52:06.514643 INFO   ] utils:print_arguments:24 -         args:
[2023-08-05 09:52:06.514678 INFO   ] utils:print_arguments:26 -                 easy_margin: False
[2023-08-05 09:52:06.514713 INFO   ] utils:print_arguments:26 -                 margin: 0.2
[2023-08-05 09:52:06.514746 INFO   ] utils:print_arguments:26 -                 scale: 32
[2023-08-05 09:52:06.514779 INFO   ] utils:print_arguments:24 -         margin_scheduler_args:
[2023-08-05 09:52:06.514814 INFO   ] utils:print_arguments:26 -                 final_margin: 0.3
[2023-08-05 09:52:06.514848 INFO   ] utils:print_arguments:28 -         use_loss: AAMLoss
[2023-08-05 09:52:06.514882 INFO   ] utils:print_arguments:28 -         use_margin_scheduler: True
[2023-08-05 09:52:06.514915 INFO   ] utils:print_arguments:21 - model_conf:
[2023-08-05 09:52:06.514950 INFO   ] utils:print_arguments:24 -         backbone:
[2023-08-05 09:52:06.514984 INFO   ] utils:print_arguments:26 -                 embd_dim: 192
[2023-08-05 09:52:06.515017 INFO   ] utils:print_arguments:26 -                 pooling_type: ASP
[2023-08-05 09:52:06.515050 INFO   ] utils:print_arguments:24 -         classifier:
[2023-08-05 09:52:06.515084 INFO   ] utils:print_arguments:26 -                 num_blocks: 0
[2023-08-05 09:52:06.515118 INFO   ] utils:print_arguments:21 - optimizer_conf:
[2023-08-05 09:52:06.515154 INFO   ] utils:print_arguments:28 -         learning_rate: 0.001
[2023-08-05 09:52:06.515188 INFO   ] utils:print_arguments:28 -         optimizer: Adam
[2023-08-05 09:52:06.515221 INFO   ] utils:print_arguments:28 -         scheduler: CosineAnnealingLR
[2023-08-05 09:52:06.515254 INFO   ] utils:print_arguments:28 -         scheduler_args: None
[2023-08-05 09:52:06.515289 INFO   ] utils:print_arguments:28 -         weight_decay: 1e-06
[2023-08-05 09:52:06.515323 INFO   ] utils:print_arguments:21 - preprocess_conf:
[2023-08-05 09:52:06.515357 INFO   ] utils:print_arguments:28 -         feature_method: MelSpectrogram
[2023-08-05 09:52:06.515390 INFO   ] utils:print_arguments:24 -         method_args:
[2023-08-05 09:52:06.515426 INFO   ] utils:print_arguments:26 -                 f_max: 14000.0
[2023-08-05 09:52:06.515460 INFO   ] utils:print_arguments:26 -                 f_min: 50.0
[2023-08-05 09:52:06.515493 INFO   ] utils:print_arguments:26 -                 hop_length: 320
[2023-08-05 09:52:06.515527 INFO   ] utils:print_arguments:26 -                 n_fft: 1024
[2023-08-05 09:52:06.515560 INFO   ] utils:print_arguments:26 -                 n_mels: 64
[2023-08-05 09:52:06.515593 INFO   ] utils:print_arguments:26 -                 sample_rate: 16000
[2023-08-05 09:52:06.515626 INFO   ] utils:print_arguments:26 -                 win_length: 1024
[2023-08-05 09:52:06.515660 INFO   ] utils:print_arguments:21 - train_conf:
[2023-08-05 09:52:06.515694 INFO   ] utils:print_arguments:28 -         log_interval: 100
[2023-08-05 09:52:06.515728 INFO   ] utils:print_arguments:28 -         max_epoch: 30
[2023-08-05 09:52:06.515761 INFO   ] utils:print_arguments:30 - use_model: EcapaTdnn
[2023-08-05 09:52:06.515794 INFO   ] utils:print_arguments:31 - ------------------------------------------------
······
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
Sequential                                    [1, 9726]                 --
├─EcapaTdnn: 1-1                              [1, 192]                  --
│    └─Conv1dReluBn: 2-1                      [1, 512, 98]              --
│    │    └─Conv1d: 3-1                       [1, 512, 98]              163,840
│    │    └─BatchNorm1d: 3-2                  [1, 512, 98]              1,024
│    └─Sequential: 2-2                        [1, 512, 98]              --
│    │    └─Conv1dReluBn: 3-3                 [1, 512, 98]              263,168
│    │    └─Res2Conv1dReluBn: 3-4             [1, 512, 98]              86,912
│    │    └─Conv1dReluBn: 3-5                 [1, 512, 98]              263,168
│    │    └─SE_Connect: 3-6                   [1, 512, 98]              262,912
│    └─Sequential: 2-3                        [1, 512, 98]              --
│    │    └─Conv1dReluBn: 3-7                 [1, 512, 98]              263,168
│    │    └─Res2Conv1dReluBn: 3-8             [1, 512, 98]              86,912
│    │    └─Conv1dReluBn: 3-9                 [1, 512, 98]              263,168
│    │    └─SE_Connect: 3-10                  [1, 512, 98]              262,912
│    └─Sequential: 2-4                        [1, 512, 98]              --
│    │    └─Conv1dReluBn: 3-11                [1, 512, 98]              263,168
│    │    └─Res2Conv1dReluBn: 3-12            [1, 512, 98]              86,912
│    │    └─Conv1dReluBn: 3-13                [1, 512, 98]              263,168
│    │    └─SE_Connect: 3-14                  [1, 512, 98]              262,912
│    └─Conv1d: 2-5                            [1, 1536, 98]             2,360,832
│    └─AttentiveStatsPool: 2-6                [1, 3072]                 --
│    │    └─Conv1d: 3-15                      [1, 128, 98]              196,736
│    │    └─Conv1d: 3-16                      [1, 1536, 98]             198,144
│    └─BatchNorm1d: 2-7                       [1, 3072]                 6,144
│    └─Linear: 2-8                            [1, 192]                  590,016
│    └─BatchNorm1d: 2-9                       [1, 192]                  384
├─SpeakerIdentification: 1-2                  [1, 9726]                 1,867,392
===============================================================================================
Total params: 8,012,992
Trainable params: 8,012,992
Non-trainable params: 0
Total mult-adds (M): 468.81
===============================================================================================
Input size (MB): 0.03
Forward/backward pass size (MB): 10.36
Params size (MB): 32.05
Estimated Total Size (MB): 42.44
===============================================================================================
[2023-08-05 09:52:08.084231 INFO   ] trainer:train:388 - 训练数据:874175
[2023-08-05 09:52:09.186542 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [0/13659], loss: 11.95824, accuracy: 0.00000, learning rate: 0.00100000, speed: 58.09 data/sec, eta: 5 days, 5:24:08
[2023-08-05 09:52:22.477905 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [100/13659], loss: 10.35675, accuracy: 0.00278, learning rate: 0.00100000, speed: 481.65 data/sec, eta: 15:07:15
[2023-08-05 09:52:35.948581 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [200/13659], loss: 10.22089, accuracy: 0.00505, learning rate: 0.00100000, speed: 475.27 data/sec, eta: 15:19:12
[2023-08-05 09:52:49.249098 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [300/13659], loss: 10.00268, accuracy: 0.00706, learning rate: 0.00100000, speed: 481.45 data/sec, eta: 15:07:11
[2023-08-05 09:53:03.716015 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [400/13659], loss: 9.76052, accuracy: 0.00830, learning rate: 0.00100000, speed: 442.74 data/sec, eta: 16:26:16
[2023-08-05 09:53:18.258807 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [500/13659], loss: 9.50189, accuracy: 0.01060, learning rate: 0.00100000, speed: 440.46 data/sec, eta: 16:31:08
[2023-08-05 09:53:31.618354 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [600/13659], loss: 9.26083, accuracy: 0.01256, learning rate: 0.00100000, speed: 479.50 data/sec, eta: 15:10:12
[2023-08-05 09:53:45.439642 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [700/13659], loss: 9.03548, accuracy: 0.01449, learning rate: 0.00099999, speed: 463.63 data/sec, eta: 15:41:08

VisualDL页面:
基于Pytorch实现的声纹识别系统,语音,Pytorch,深度学习,pytorch,人工智能,python,声纹识别,深度学习

评估模型

训练结束之后会保存预测模型,我们用预测模型来预测测试集中的音频特征,然后使用音频特征进行两两对比,计算EER和MinDCF。

python eval.py

输出类似如下:

······
------------------------------------------------
W0425 08:27:32.057426 17654 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:27:32.065165 17654 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2023-03-16 20:20:47.195908 INFO   ] trainer:evaluate:341 - 成功加载模型:models/EcapaTdnn_Fbank/best_model/model.pth
100%|███████████████████████████| 84/84 [00:28<00:00,  2.95it/s]
开始两两对比音频特征...
100%|███████████████████████████| 5332/5332 [00:05<00:00, 1027.83it/s]
评估消耗时间:65s,threshold:0.26,EER: 0.14739, MinDCF: 0.41999

声纹对比

下面开始实现声纹对比,创建infer_contrast.py程序,编写infer()函数,在编写模型的时候,模型是有两个输出的,第一个是模型的分类输出,第二个是音频特征输出。所以在这里要输出的是音频的特征值,有了音频的特征值就可以做声纹识别了。我们输入两个语音,通过预测函数获取他们的特征数据,使用这个特征数据可以求他们的对角余弦值,得到的结果可以作为他们相识度。对于这个相识度的阈值threshold,读者可以根据自己项目的准确度要求进行修改。

python infer_contrast.py --audio_path1=audio/a_1.wav --audio_path2=audio/b_2.wav

输出类似如下:

[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - audio_path1: dataset/a_1.wav
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - audio_path2: dataset/b_2.wav
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:29:10.006249 21121 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:29:10.008555 21121 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/EcapaTdnn_Fbank/best_model/model.pth
audio/a_1.wav 和 audio/b_2.wav 不是同一个人,相似度为:-0.09565544128417969

同时还提供了有GUI界面的声纹对比程序,执行infer_contrast_gui.py启动程序,界面如下,分别选择两个音频,点击开始判断,就可以判断它们是否是同一个人。

基于Pytorch实现的声纹识别系统,语音,Pytorch,深度学习,pytorch,人工智能,python,声纹识别,深度学习

声纹识别

在上面的声纹对比的基础上,我们创建infer_recognition.py实现声纹识别。同样是使用上面声纹对比的infer()预测函数,通过这两个同样获取语音的特征数据。 不同的是笔者增加了load_audio_db()register(),以及recognition(),第一个函数是加载声纹库中的语音数据,这些音频就是相当于已经注册的用户,他们注册的语音数据会存放在这里,如果有用户需要通过声纹登录,就需要拿到用户的语音和语音库中的语音进行声纹对比,如果对比成功,那就相当于登录成功并且获取用户注册时的信息数据。第二个函数register()其实就是把录音保存在声纹库中,同时获取该音频的特征添加到待对比的数据特征中。最后recognition()函数中,这个函数就是将输入的语音和语音库中的语音一一对比。
有了上面的声纹识别的函数,读者可以根据自己项目的需求完成声纹识别的方式,例如笔者下面提供的是通过录音来完成声纹识别。首先必须要加载语音库中的语音,语音库文件夹为audio_db,然后用户回车后录音3秒钟,然后程序会自动录音,并使用录音到的音频进行声纹识别,去匹配语音库中的语音,获取用户的信息。通过这样方式,读者也可以修改成通过服务请求的方式完成声纹识别,例如提供一个API供APP调用,用户在APP上通过声纹登录时,把录音到的语音发送到后端完成声纹识别,再把结果返回给APP,前提是用户已经使用语音注册,并成功把语音数据存放在audio_db文件夹中。

python infer_recognition.py

输出类似如下:

[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - audio_db_path: audio_db/
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - record_seconds: 3
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:30:13.257884 23889 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:30:13.260191 23889 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pth
Loaded 沙瑞金 audio.
Loaded 李达康 audio.
请选择功能,0为注册音频到声纹库,1为执行声纹识别:0
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
请输入该音频用户的名称:夜雨飘零
请选择功能,0为注册音频到声纹库,1为执行声纹识别:1
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
识别说话的为:夜雨飘零,相似度为:0.920434

同时还提供了有GUI界面的声纹识别程序,执行infer_recognition_gui.py启动,点击注册音频到声纹库按钮,理解开始说话,录制3秒钟,然后输入注册人的名称,之后可以执行声纹识别按钮,然后立即说话,录制3秒钟后,等待识别结果。删除用户按钮可以删除用户。实时识别按钮可以实时识别,可以一直录音,一直识别。

基于Pytorch实现的声纹识别系统,语音,Pytorch,深度学习,pytorch,人工智能,python,声纹识别,深度学习

增量学习 (效果不好)

增量学习是为了克服在训练新数据的时候对旧数据出现灾难性遗忘,如果在声纹识别模型中只单纯微调新数据,直接修改模型的输出大小,反而会导致整个模型性能下降,甚至完全不可用。为了避免这种情况出现,本项目提供了增量学习的方法,即使在没有原数据集的情况下,也可以训练私有数据,在提高私有数据集准确率的情况下,也不会严重影响模型本身的性能。

  1. 首先要确保网络结构是一样的,除了最后的分类大小不一样,其他都一样。也就是说跟模型权重配套的配置文件中,模型参数只允许修改num_speakers参数,其他的model_conf参数不能修改。
  2. 增量学习中,不能使用语速增强增加说话人数量,也就是说speed_perturb_3_class参数必须为False。
  3. 在生成数据列表的时候,开始的标签必须是原模型的分类大小,而不是0,如果不知道原模型的分类大小,可以参考下面代码输出模型大小。
  4. 加载的是预训练模型,而不是恢复模型。

获取输出模型大小代码:

import torch

static_model = torch.load('model.pth')

old_num_class = static_model['1.weight'].size(0)
print(f'原分类器输出大小:{old_num_class}')

增量学习训练启动命令,只需要指定train_method参数为ewc,并且指定预训练模型路径即可:

python train.py --train_method=ewc --pretrained_model=models/CAMPPlus_Fbank/best_model/model.pth

增量学习实验记录表

模型 epoch 原始数据集 EER MinDCF 增量学习数据集 speakers id EER MinDCF
CAM++(训练VoxCeleb1) 60 CN-Celeb 0.19002 0.75617 VoxCeleb1 0-1211 0.02333 0.33096
CAM++(训练CN-Celeb) 60 CN-Celeb 0.09557 0.53516 VoxCeleb1 - 0.11157 0.80615
CAM++(直接微调) 30 CN-Celeb 0.15579 0.65516 VoxCeleb1 0-1211 0.02255 0.28629
CAM++(增量学习) 30 CN-Celeb 0.16547 0.77772 VoxCeleb1 8388-9598 0.09597 0.72813

说明:文章来源地址https://www.toymoban.com/news/detail-662144.html

  1. CN-Celeb的测试集为CN-Celeb的测试集,包含196个说话人。
  2. VoxCeleb1的测试集为VoxCeleb1测试集,包含40个说话人。
  3. 用于微调和增量学习的模型,原始模型分类大小为8388,CN-Celeb有2796个说话人,语速增强增加了3倍。

其他版本

  • Tensorflow:VoiceprintRecognition-Tensorflow
  • PaddlePaddle:VoiceprintRecognition-PaddlePaddle
  • Keras:VoiceprintRecognition-Keras

参考资料

  1. https://github.com/PaddlePaddle/PaddleSpeech
  2. https://github.com/yeyupiaoling/PaddlePaddle-MobileFaceNets
  3. https://github.com/yeyupiaoling/PPASR
  4. https://github.com/alibaba-damo-academy/3D-Speaker

到了这里,关于基于Pytorch实现的声纹识别系统的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于深度学习的语音识别算法的设计与实现

    收藏和点赞,您的关注是我创作的动力   语音识别(Speech Recognition)是一种让机器通过识别音频把语音信号转变为相 应的文本或命令的技术语音识别技术主要有模式匹配识别法,声学特征提取,声学模型 建模 ,语言模型建模等技术组成。借助机器学习领域中的深度学习的

    2024年02月06日
    浏览(51)
  • 基于百度语音识别API智能语音识别和字幕推荐系统——深度学习算法应用(含全部工程源码)+测试数据集

    本项目基于百度语音识别API,结合了语音识别、视频转换音频识别以及语句停顿分割识别等多种技术,从而实现了高效的视频字幕生成。 首先,我们采用百度语音识别API,通过对语音内容进行分析,将音频转换成文本。这个步骤使得我们能够从语音中提取出有意义的文本信息

    2024年02月13日
    浏览(57)
  • 基于深度学习的中文语音识别系统(计算机毕设 附完整代码)

    该系统实现了基于深度框架的语音识别中的声学模型和语言模型建模,其中声学模型包括 CNN-CTC、GRU-CTC、CNN-RNN-CTC,语言模型包含 transformer、CBHG,数据集包含 stc、primewords、Aishell、thchs30 四个数据集。 本项目现已训练一个迷你的语音识别系统,将项目下载到本地上,下载 th

    2024年02月11日
    浏览(79)
  • Pytorch实现基于深度学习的面部表情识别(最新,非常详细)

    基于深度学习的面部表情识别 (Facial-expression Recognition) 数据集cnn_train.csv包含人类面部表情的图片的label和feature。 在这里,面部表情识别相当于一个分类问题,共有7个类别。 其中label包括7种类型表情: 一共有28709个label,即包含28709张表情包。 每一行就是一张表情包4848=2304个

    2024年02月04日
    浏览(81)
  • 基于深度学习的高精度浣熊检测识别系统(PyTorch+Pyside6+模型)

    摘要:基于深度学习的高精度浣熊检测(水牛、犀牛、斑马和大象)识别系统可用于日常生活中或野外来检测与定位浣熊目标,利用深度学习算法可实现图片、视频、摄像头等方式的浣熊目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标

    2024年02月09日
    浏览(50)
  • 基于深度学习的高精度山羊检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度山羊检测识别系统可用于日常生活中或野外来检测与定位山羊目标,利用深度学习算法可实现图片、视频、摄像头等方式的山羊目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用

    2024年02月07日
    浏览(62)
  • 基于深度学习的高精度鸽子检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度鸽子检测识别系统可用于日常生活中或野外来检测与定位鸽子目标,利用深度学习算法可实现图片、视频、摄像头等方式的鸽子目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用

    2024年02月09日
    浏览(52)
  • 基于深度学习的高精度水果检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度水果(苹果、香蕉、葡萄、橘子、菠萝和西瓜)检测识别系统可用于日常生活中或野外来检测与定位水果目标,利用深度学习算法可实现图片、视频、摄像头等方式的水果目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统

    2024年02月11日
    浏览(48)
  • 基于深度学习的高精度猴子检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度猴子检测识别系统可用于日常生活中或野外来检测与定位猴子目标,利用深度学习算法可实现图片、视频、摄像头等方式的猴子目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用

    2024年02月12日
    浏览(73)
  • 基于深度学习的高精度绵羊检测识别系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于深度学习的高精度绵羊检测识别系统可用于日常生活中或野外来检测与定位绵羊目标,利用深度学习算法可实现图片、视频、摄像头等方式的绵羊目标检测识别,另外支持结果可视化与图片或视频检测结果的导出。本系统采用YOLOv5目标检测模型训练数据集,使用

    2024年02月10日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包