分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_
torch.nn.init
模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()
模式下运行,autograd
不会将其考虑在内。
该函数从均匀分布 U ( a , b ) U(a, b) U(a,b)中生成值,填充输入的张量或变量文章来源:https://www.toymoban.com/news/detail-662360.html
语法
torch.nn.init.uniform_(tensor, a=0.0, b=1.0)
参数
-
tensor
:[Tensor
] 一个 N N N维张量torch.Tensor
-
a
:[float
] 均匀分布的下界 -
b
:[float
] 均匀分布的上界
返回值
一个torch.Tensor
且参数tensor
也会更新文章来源地址https://www.toymoban.com/news/detail-662360.html
实例
w = torch.empty(3, 5)
nn.init.uniform_(w)
函数实现
def uniform_(tensor: Tensor, a: float = 0., b: float = 1.) -> Tensor:
r"""Fills the input Tensor with values drawn from the uniform
distribution :math:`\mathcal{U}(a, b)`.
Args:
tensor: an n-dimensional `torch.Tensor`
a: the lower bound of the uniform distribution
b: the upper bound of the uniform distribution
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.uniform_(w)
"""
if torch.overrides.has_torch_function_variadic(tensor):
return torch.overrides.handle_torch_function(uniform_, (tensor,), tensor=tensor, a=a, b=b)
return _no_grad_uniform_(tensor, a, b)
到了这里,关于深入浅出Pytorch函数——torch.nn.init.uniform_的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!