从0开始yolov8模型目标检测训练

这篇具有很好参考价值的文章主要介绍了从0开始yolov8模型目标检测训练。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

从0开始yolov8模型目标检测训练 验证和测试

1 大环境

首先有大环境,即已经准备好了python、nvidia驱动、cuda、cudnn等。

2 yolov8的虚拟环境

2.1 创建虚拟环境

conda create -n yolov8 python=3.10

2.2 激活虚拟环境

注意:激活虚拟环境的时候,需要清楚自己创建的虚拟环境(yolov8)是在root权限下,还是在user权限下,否则,当使用source activate yolov8激活环境的时候,可能一直会提示Could not find conda environment: yolov5s;You can list all discoverable environments with conda info --envs

source activate yolov8
# 如果是windows的话,使用
conda activate yolov8
# 关闭虚拟环境
source deactivate yolov8
# 删除虚拟环境
conda remove -n yolov8 --all
# 删除虚拟环境中的某个包
conda remove --name $yolov8  $package_name 
# 添加conda的清华镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn

其它:普通用户和root用户权限相互切换的方法:

exit
或
su user(user是自己安装时的用户名)

2.3 在虚拟环境中安装yolov8的必要依赖项

进入yolov8项目的根目录下

cd MyTrain/ultralytics-main

然后,使用Pip在一个Python>=3.8环境中安装ultralytics包,此环境还需包含PyTorch>=1.7。同时也会安装所有必要的requirements.txt。

pip install ultralytics

3 准备数据集

3.1 数据集介绍

采用26058张图片,标签文件是之前用标注精灵标注导出的json文件。

3.2 标签统计

统计标注文件包含的标签类别及数量如下

'suv': 19843, 'car': 222010, 'van': 8538, 'bigtru': 11775, 'bus': 7733, 'tralight': 32538, 'tricycle': 9454, 'elec': 45199, 'pedes': 36552, 'smatru': 2281, 'bike': 7908, 'coach': 443, 'tank': 2659, 'pickup': 943, 'trailer': 438, 'mpv': 1839, ' car': 1354, ' ca   r': 1, 'elec ': 12, 'moto': 843, 'crane': 173, 'warm': 151644, 'percycle': 127, 'engine': 157, 'polic': 398, 'coni': 9758, 'pedesd': 13, 'van ': 1, 'motopoli': 22, 'escort': 26, 'tralight ': 1, 'right': 78, 'left': 114, 'stopline': 4, 'zebraline': 78, 'bull': 19, 'excava': 4, 'suv ': 2, 'zebraliner': 1, 'car ': 3, '            ': 1, 'car      ': 1, 'ambu': 168, 'sanJiaoWarm': 778, 'suLiaoDao': 506, 'zhiXiang': 1248, 'suLiaoDai': 414, 'lunTai': 643, 'yiZi': 20, 'ar': 1, '  car': 141, 'bus-c': 2, 'elerc': 1, 'pedes ': 1, 'pedesr': 3, 'carr': 1, 'bigtrur': 2, 'elecr': 12, 'suvr': 72, 

上述标签类别解释:上述存在的一些奇怪标签,如’carr’、‘bigtrur’、'pedes ‘等很显然是由于误输入’r’或空格字符导致的,故在转换为yolov5的标注格式的时候,需考虑在内。故采用映射如下,得到标签及ID。其中标签’sanJiao Warm’, ‘suLiaoDao’, ‘zhiXiang’, ‘suLiaoDai’, ‘lunTai’, 'yiZi’等标签不作为训练。

{'suv': 1, 'car': 1, 'van': 1, 'bigtru': 3, 'bus': 2, 'tralight': 9, 'tricycle': 6, 'elec': 5, 'pedes': 0, 'smatru': 3, 'bike': 4, 'coach': 2, 'tank': 3, 'pickup': 1, 'trailer': 3, 'mpv': 1, ' car': 1, ' ca   r': 1, 'elec ': 5, 'moto': 5, 'crane': 3, 'warm': 8, 'engine': 3, 'polic': 10, 'coni': 7, 'pedesd': 0, 'van ': 1, 'motopoli': 5, 'escort': 3, 'tralight ': 9, 'bull': 3, 'excava': 3, 'suv ': 1, 'car ': 1,  'car      ': 1, 'ambu': 10, 'ar': 1, '  car': 1, 'bus-c': 2, 'elerc': 5, 'pedes ': 0,  'pedesr': 0, 'carr': 1, 'bigtrur': 3, 'elecr': 5, 'suvr': 1}

标签重新分配如下

pedes: 0, car: 1, bus: 2, truck: 3, bike: 4, elec: 5, tricycle: 6, coni: 7, warm: 8, tralight: 9, special_vehicles: 10

3.3 转为yolov8的txt

yolov8的标签文件和yolov5是一样的,需要归一化(0-1)的目标类型、 Box中心点坐标x、Box中心点坐标y、Box宽、Box高

--datasTrain
------train_list.txt	# 包含训练每张图片的路径
------val_list.txt
------test_list.txt
------images
----------train     	# 存放训练数据集的图片(.jpg)
----------val
----------test
------labels
----------train			# 存放训练图片对应的标签文件(.txt)
----------val
----------tes

datasTrain/labels/train目录下的文件示例,如下为data220829_0001.jpg对应的data220829_0001.txt的前6行内容。

2 0.29427 0.33842 0.19479 0.27685
3 0.11380 0.56111 0.22760 0.43703
3 0.39479 0.41064 0.11041 0.17314
1 0.39401 0.29490 0.02760 0.06759
1 0.40729 0.25833 0.05 0.07222
1 0.61875 0.16574 0.02604 0.04444

4 准备训练

4.1 模型的配置文件

修改路径下的配置文件 ultralytics-main/ultralytics/yolo/cfg/default.yaml 参数,以执行相应的操作(train、val、test)。

yolo/cfg/default.yaml 中如下参数需设置或查验与任务是否一致(包含训练模式示例值)

task: detect  # inference task, i.e. detect, segment, classify
mode: train  # YOLO mode, i.e. train, val, predict, export

# Train settings -------------------------------------------------
# model 使用.pt文件是通过预训练模型
# model:  ./preDetectModel/yolov8s.pt 
# model 使用.yaml文件是从头开始训练,使用COCO模型来预训练口罩检测不可取,必须从头训练
model:  D:/yolov5train/yolov8_main/ultralytics/models/v8/yolov8s.yaml  
# data: path to data file, i.e. coco128.yaml
data:  D:/yolov5train/yolov8_main/ultralytics/yolo/v8/detect/data/my_yolov8.yaml
epochs: 300  # number of epochs to train for
patience: 50  # epochs to wait for no observable improvement for early stopping of training
batch: 2  # number of images per batch (-1 for AutoBatch)
imgsz: 960  # size of input images as integer or w,h
save: True  # save train checkpoints and predict results
save_period: 10 # Save checkpoint every x epochs (disabled if < 1,设为-1则禁用保存检查点)

single_cls: False  # train multi-class data as single-class
rect: True  # support rectangular train/val if mode='train'/'val'
resume: False  # resume training from last checkpoint

上述参数详解参考博客:https://blog.csdn.net/weixin_45277161/article/details/131047101

其中模型的配置文件位于ultralytics-main/ultralytics/models/v8/yolov8s.yaml ,该文件包含主要内容如下:

# Parameters
nc: 11  # number of classes

scales: # model compound scaling constants
# [depth, width, max_channels]
s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs

# YOLOv8.0n backbone
backbone:
# YOLOv8.0n head
head:

4.2 数据的配置文件

数据集的配置文件模仿ultralytics-main/ultralytics/datasets/coco.yaml文件的写法,记为my_yolov8.yaml,该文件包含内容如下

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:/yolov5train/datasTrain3_More  # dataset root dir
train: D:/yolov5train/datasTrain3_More/train_list.txt  # train images (relative to 'path') 
val: D:/yolov5train/datasTrain3_More/val_list.txt  # val images (relative to 'path') 
test: D:/yolov5train/datasTrain3_More/test_list.txt

# Classes
names:
  0: pedes
  1: car
  2: bus
  3: truck
  4: bike
  5: elec
  6: tricycle
  7: coni
  8: warm
  9: tralight
  10: specialVehicle

4.3 train的.py文件

其实train.py文件中的参数在ultralytics-main/ultralytics/yolo/cfg/default.yaml中如果设置好了的话,就可以不用管了。如果没有设置/yolo/cfg/default.yaml的话,采用如下方式启动训练,否则,采用4.4所述的方式启动训练命令。

ultralytics-main/ultralytics$yolo task=detect mode=train model=models/v8/yolov8s.yaml data=/ultralytics/yolo/v8/detect/data/my_yolov8.yaml imgsz=960 batch=-1 epochs=300 patience=50 workers=4
# 同时也尽可以正确设置/yolo/cfg/default.yaml中的参数 

4.4 训练命令

cd ultralytics-main/ultralytics/
yolo cfg=./yolo/cfg/default.yaml  
或
yolo cfg = ./yolo/cfg/default.yaml task=detect mode=train rect=True batch = 64 epochs = 300 imgsz=960 data=my_data.yaml
#  my_data.yaml如下
path: home/MyTrain/datas/  # dataset root dir
train: images/train  # train images (relative to 'path') 128 images
val: images/val  # val images (relative to 'path') 128 images
names:
 0: pedes
 1: car
 2: bus
 3: truck
 4: bike
 5: moto
 6: tricycle
 7: coni
 8: warn
 9: tralight
 10: specialVehicle
# names:
#   0: 行人
#   1: 轿车
#   2: 公交
#   3: 货车
#   4: 自行车
#   5: 摩托车
#   6: 三轮车
#   7: 锥桶
#   8: 警示标志
#   9: 信号灯
#   10: 特殊车辆

【问题1】

300轮的正常训练结束了,但是仍然报了一个pyplot的奇怪的问题如下

plt.switch_backend(original_backend)
File "/home/user/anaconda3/envs/yolov8/lib/python3.10/site-packages/matplotlib/pyplot.py", line 279, in switch_backend
raise ImportError(
ImportError: Cannot load backend 'TkAgg' which requires the 'tk' interactive framework, as 'headless' is currently running

matplotlib版本过高导致的,卸载环境中matplotlib版本,重新安装。

pip uninstall matplotlib
pip install matplotlib==3.2.1
# 由于 v8在训练的时候,大环境ultralytics 8.0.155 requires matplotlib>=3.2.2。
# 所以又重新卸载了 装了一个刚好大于等于3.2.2版本的matplotlib
# 如下
pip install matplotlib==3.3.0

5 验证和测试

5.1 验证

修改路径下的配置文件 ultralytics-main/ultralytics/yolo/cfg/default.yaml 参数如下,要验证验证集,需将Val/Test settings下的split: val设置为val

mode: val 
——————————————————————————
# Val/Test settings ----------------------------------
val: True  			# (bool) validate/test during training
split: val  		# (str) dataset split to use for validation
save_json: False  	# (bool) save results to JSON file
save_hybrid: False  # (bool) save (labels + additional predictions)
conf:  0.25 		# (float, optional)  (default 0.25 predict, 0.001 val)
iou: 0.5  			# (float) intersection over union (IoU) threshold for NMS
max_det: 300  		# (int) maximum number of detections per image
half: False  		# (bool) use half precision (FP16)
dnn: False  		# (bool) use OpenCV DNN for ONNX inference
plots: True  		# (bool) save plots during train/val

执行

cd ultralytics-main/ultralytics/
yolo cfg=./yolo/cfg/default.yaml  

5.2 测试

修改路径下的配置文件 ultralytics-main/ultralytics/yolo/cfg/default.yaml 参数如下,要验证测试集,需将Val/Test settings下的split: val改设置为test

mode: val 
——————————————————————————
# Val/Test settings ----------------------------------
val: True  			# (bool) validate/test during training
split: test  		# (str) dataset split to use for validation

执行文章来源地址https://www.toymoban.com/news/detail-662559.html

cd ultralytics-main/ultralytics/
yolo cfg=./yolo/cfg/default.yaml  
或
yolo cfg = ./yolo/cfg/default.yaml task=detect mode=predict source=/home/mydata/ save_txt=True 

到了这里,关于从0开始yolov8模型目标检测训练的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 目标检测YOLO实战应用案例100讲-基于改进的 YOLOv8 小目标检测

    目录 前言 研究现状 传统目标检测算法 基于卷积神经网络的目标检测算法

    2024年02月07日
    浏览(44)
  • 目标检测YOLO算法,先从yolov1开始

    有一套配套的学习资料,才能让我们的学习事半功倍。 yolov1论文原址:You Only Look Once: Unified, Real-Time Object Detection 代码地址:darknet: Convolutional Neural Networks (github.com) one-stage(单阶段):YOLO系列 最核心的优势:速度非常快,适合做实时检测任务! 但是缺点也是有的,效果通常

    2024年02月09日
    浏览(45)
  • YOLOv5入门实践(5)——从零开始,手把手教你训练自己的目标检测模型(包含pyqt5界面)

      通过前几篇文章,相信大家已经学会训练自己的数据集了。本篇是YOLOv5入门实践系列的最后一篇,也是一篇总结,我们再来一起按着 配置环境--标注数据集--划分数据集--训练模型--测试模型--推理模型 的步骤,从零开始,一起实现自己的目标检测模型吧! 前期回顾: YOLO

    2023年04月26日
    浏览(55)
  • 使用YOLOv8训练自己的【目标检测】数据集

    随着深度学习技术在计算机视觉领域的广泛应用,行人检测和车辆检测等任务已成为热门研究领域。然而,实际应用中,可用的预训练模型可能并不适用于所有应用场景。 例如,虽然预先训练的模型可以检测出行人,但它无法区分“好人”和“坏人”,因为它没有接受相关的

    2024年04月10日
    浏览(51)
  • 【目标检测算法实现之yolov8】yolov8训练并测试VisDrone数据集

    在这之前,需要先准备主机的环境,环境如下: Ubuntu18.04 cuda11.3 pytorch:1.11.0 torchvision:0.12.0 在服务器上执行以下命令, pytorch v1.11.0(torch1.11.0+cu1113 ,torchvision0.12.0+cu113) 先创建yolov8文件夹,存放等会要下载的yolov8代码 mkdir yolov8 进入yolov8文件夹, cd yolov8 下载yolov8代码 git cl

    2024年02月13日
    浏览(43)
  • YOLOv8目标检测:自定义数据集训练与评估

    摘要:在本教程中,我们将详细介绍如何使用自定义数据集训练YOLOv8模型,并用Python代码评估模型性能。 正文: 一、准备自定义数据集 为了训练YOLOv8模型,我们需要一个标注好的自定义数据集。数据集应包含图像文件和对应的标注文件,标注文件中包含目标类别和边界框信

    2024年02月06日
    浏览(47)
  • 【YOLO】YOLOv8实操:环境配置/自定义数据集准备/模型训练/预测

    源码链接:https://github.com/ultralytics/ultralytics yolov8和yolov5是同一作者,相比yolov5,yolov8的集成性更好了,更加面向用户了 YOLO命令行界面(command line interface, CLI) 方便在各种任务和版本上训练、验证或推断模型。CLI不需要定制或代码,可以使用yolo命令从终端运行所有任务。 如果

    2023年04月24日
    浏览(57)
  • 【深度学习】YOLOv8训练过程,YOLOv8实战教程,目标检测任务SOTA,关键点回归

    https://github.com/ultralytics/ultralytics 官方教程:https://docs.ultralytics.com/modes/train/ 更建议下载代码后使用 下面指令安装,这样可以更改源码,如果不需要更改源码就直接pip install ultralytics也是可以的。 这样安装后,可以直接修改yolov8源码,并且可以立即生效。此图是命令解释: 安

    2024年02月10日
    浏览(55)
  • 在自定义数据集上训练 YOLOv8 进行目标检测

    这是目标检测中令人惊叹的 AI 模型之一。在这种情况下,您无需克隆存储库、设置要求并配置模型,就像在 YOLOv5 及其之前的版本中所做的那样。 在 YOLOv8 中,不需要执行这些手动任务。您只需安装 Ultralytics 即可,我将向您展示如何通过一个简单的命令安装它。 这是一个提

    2024年02月01日
    浏览(49)
  • 人工智能学习07--pytorch21--目标检测:YOLO系列理论合集(YOLOv1~v3)

    如果直接看yolov3论文的话,会发现有好多知识点没见过,所以跟着视频从头学一下。 学习up主霹雳吧啦Wz大佬的学习方法: 想学某个网络的代码时: 到网上搜这个网络的讲解 → 对这个网络大概有了印象 → 读论文原文 ( 很多细节都要依照原论文来实现, 自己看原论文十分

    2024年02月10日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包