交叉熵--损失函数

这篇具有很好参考价值的文章主要介绍了交叉熵--损失函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

交叉熵(Cross Entropy)

【预备知识】

【信息量】

【信息熵】

【相对熵】

【交叉熵】


交叉熵(Cross Entropy)

是Shannon信息论中一个重要概念,

主要用于度量两个概率分布间的差异性信息。

语言模型的性能通常用交叉熵和复杂度(perplexity)来衡量。交叉熵的意义是用该模型对文本识别的难度,或者从压缩的角度来看,每个词平均要用几个位来编码。复杂度的意义是用该模型表示这一文本平均的分支数,其倒数可视为每个词的平均概率。

平滑是指对没观察到的N元组合赋予一个概率值,以保证词序列总能通过语言模型得到一个概率值。通常使用的平滑技术有图灵估计、删除插值平滑、Katz平滑和Kneser-Ney平滑。

将交叉熵引入计算语言学消岐领域,采用语句的真实语义作为交叉熵的训练集的先验信息,将机器翻译的语义作为测试集后验信息。计算两者的交叉熵,并以交叉熵指导对歧义的辨识和消除。实例表明,该方法简洁有效.易于计算机自适应实现。交叉熵不失为计算语言学消岐的一种较为有效的工具。

  交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量p与q的相似性。交叉熵作为损失函数还有一个好处是使用sigmoid函数在梯度下降时能避免均方误差损失函数学习速率降低的问题,因为学习速率可以被输出的误差所控制。

【预备知识】

  1、信息量;

  2、信息熵;

  3、相对熵。

【信息量】

  所谓信息量是指从N个相等可能事件中选出一个事件所需要的信息度量或含量,也就是在辩识N个事件中特定的一个事件的过程中所需要提问"是或否"的最少次数。在数学上,所传输的消息是其出现概率的单调下降函数。如从64个数中选定某一个数,提问:“是否大于32?”,则不论回答是与否,都消去了半数的可能事件,如此下去,只要问6次这类问题,就可以从64个数中选定一个数。我们可以用二进制的6个位来记录这一过程,就可以得到这条信息。

  假设X是一个离散型随机变量,其取值集合为X,概率分布函数为p(x)=Pr(X=x),x∈X,我们定义事件X=x0的信息量为: I(x0)=−log(p(x0)),可以理解为,一个事件发生的概率越大,则它所携带的信息量就越小,而当p(x0)=1时,熵将等于0,也就是说该事件的发生不会导致任何信息量的增加。举个例子,小明平时不爱学习,考试经常不及格,而小王是个勤奋学习的好学生,经常得满分,所以我们可以做如下假设: 

  事件A:小明考试及格,对应的概率P(xA)=0.1,信息量为I(xA)=−log(0.1)=3.3219 

  事件B:小王考试及格,对应的概率P(xB)=0.999,信息量为I(xB)=−log(0.999)=0.0014 

  可以看出,结果非常符合直观:小明及格的可能性很低(十次考试只有一次及格),因此如果某次考试及格了(大家都会说:XXX竟然及格了!),必然会引入较大的信息量,对应的I值也较高。而对于小王而言,考试及格是大概率事件,在事件B发生前,大家普遍认为事件B的发生几乎是确定的,因此当某次考试小王及格这个事件发生时并不会引入太多的信息量,相应的I值也非常的低。

【信息熵】

  信息理论的鼻祖之一Claude E. Shannon把信息(熵)定义为离散随机事件的出现概率。所谓信息熵,是一个数学上颇为抽象的概念,在这里不妨把信息熵理解成某种特定信息的出现概率。一般而言,当一种信息出现概率更高的时候,表明它被传播得更广泛,或者说,被引用的程度更高。我们可以认为,从信息传播的角度来看,信息熵可以表示信息的价值。为了求得信息的价值,我们通过求信息期望的方式,来求得信息熵。公式如下:H(x) = E[I(xi)] = E[ log(1/p(xi)) ] = -∑p(xi)log(p(xi)) 其中,x表示随机变量,与之相对应的是所有可能输出的集合,定义为符号集,随机变量的输出用x表示。P(x)表示输出概率函数。变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大。为了保证有效性,这里约定当p(x)→0时,有p(x)logp(x)→0 。

当X为0-1分布时,熵与概率p的关系如下图:

交叉熵--损失函数,2023 AI,机器学习,人工智能

  

  可以看出,当两种取值的可能性相等时,不确定度最大(此时没有任何先验知识),这个结论可以推广到多种取值的情况。在图中也可以看出,当p=0或1时,熵为0,即此时X完全确定。 熵的单位随着公式中log运算的底数而变化,当底数为2时,单位为“比特”(bit),底数为e时,单位为“奈特”。

【相对熵】

  相对熵,又称KL散度( Kullback–Leibler divergence),是描述两个概率分布P和Q差异的一种方法。它是非对称的,这意味着D(P||Q) ≠ D(Q||P)。特别的,在信息论中,D(P||Q)表示当用概率分布Q来拟合真实分布P时,产生的信息损耗,其中P表示真实分布,Q表示P的拟合分布。有人将KL散度称为KL距离,但事实上,KL散度并不满足距离的概念,因为:(1)KL散度不是对称的;(2)KL散度不满足三角不等式。

  设P(X)和Q(X)是X取值的两个离散概率分布,则P对Q的的相对熵为:

交叉熵--损失函数,2023 AI,机器学习,人工智能

交叉熵--损失函数,2023 AI,机器学习,人工智能

  显然,当p=q 时,两者之间的相对熵DKL(p||q)=0 。上式最后的Hp(q)表示在p分布下,使用q进行编码需要的bit数,而H(p)表示对真实分布p所需要的最小编码bit数。基于此,相对熵的意义就很明确了:DKL(p||q)表示在真实分布为p的前提下,使用q分布进行编码相对于使用真实分布p进行编码(即最优编码)所多出来的bit数。并且为了保证连续性,做如下约定: 

交叉熵--损失函数,2023 AI,机器学习,人工智能

【交叉熵】

  在信息论中,交叉熵是表示两个概率分布p,q,其中p表示真实分布,q表示非真实分布,在相同的一组事件中,其中,用非真实分布q来表示某个事件发生所需要的平均比特数。从这个定义中,我们很难理解交叉熵的定义。

  假设现在有一个样本集中两个概率分布p,q,其中p为真实分布,q为非真实分布。假如,按照真实分布p来衡量识别一个样本所需要的编码长度的期望为:

  H(p)=

交叉熵--损失函数,2023 AI,机器学习,人工智能

  但是,如果非真实分布q来表示来自真实分布p的平均编码长度,则应该是:

     H(p,q)=

交叉熵--损失函数,2023 AI,机器学习,人工智能

  此时就将H(p,q)称之为交叉熵。交叉熵的计算方式如下:

    CEH(p,q)= 

交叉熵--损失函数,2023 AI,机器学习,人工智能

  

交叉熵--损失函数,2023 AI,机器学习,人工智能

  

交叉熵--损失函数,2023 AI,机器学习,人工智能

  对所有训练样本取均值得: 

   

交叉熵--损失函数,2023 AI,机器学习,人工智能文章来源地址https://www.toymoban.com/news/detail-662993.html

到了这里,关于交叉熵--损失函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 2023什么电脑配置适合机器学习和人工智能

    机器学习和人工智能应用有多种类型——从传统的回归模型、非神经网络分类器和以 Python SciKitLearn 和 R 语言的功能为代表的统计模型,到使用 PyTorch 和 TensorFlow 等框架的深度学习模型. 在这些不同类型的 ML/AI 模型中,也可能存在显着差异。“最佳”硬件将遵循一些标准模式

    2023年04月24日
    浏览(99)
  • 人工智能与机器学习课程大作业(二、函数逼近)

    本文为人工智能与机器学习课程大作业第二部分(二、函数逼近) 本文仅作学习参考使用!  其他章节跳转: 一、知识工程基础 二、函数逼近 三、模糊逻辑 四、函数优化 二、函数逼近 2.1 BP网络 2.1.1 BP神经网络原理 2.1.2 基于BP神经网络的非线性函数逼近 2.2 改变BP网络模型

    2024年02月03日
    浏览(51)
  • 【深度学习】002-损失函数:MSE、交叉熵、铰链损失函数(Hinge Loss)

    目录 前言 一、均方误差损失函数(The Mean-Squared Loss)       1.1、从线性回归模型导出均方误差函数       1.2、均方误差函数的使用场景       1.3、均方误差函数的一些讨论 2、交叉熵损失函数(The Cross-Entropy Loss)       2.1、从softmax运算到交叉熵       2.2、信息论

    2024年02月05日
    浏览(46)
  • 【AI】了解人工智能、机器学习、神经网络、深度学习

    一、深度学习、神经网络的原理是什么? 深度学习和神经网络都是基于对人脑神经系统的模拟。下面将分别解释深度学习和神经网络的原理。 深度学习的原理: 深度学习是一种特殊的机器学习,其模型结构更为复杂,通常包括很多隐藏层。它依赖于神经网络进行模型训练和

    2024年02月06日
    浏览(79)
  • AI人工智能 机器学习 深度学习 学习路径及推荐书籍

    人工智能、机器学习和深度学习覆盖的技术范畴是逐层递减的,三者的关系:人工智能 机器学习 深度学习。 人工智能(ArtificialIntelligence,AI)是最宽泛的概念,是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学 机器学习(MachineLear

    2023年04月24日
    浏览(66)
  • 大象机器人人工智能套装2023版深度学习协作机器人、先进机器视觉与应用场景

    介绍当前的版本 今天我们要介绍的是aikit2023,aikit2023是aikit的全新升级版。 AIkit 2023 是一套集视觉,定位抓取、自动分拣模块为一体的入门级人工智能套装。 该套装基于python平台,可通过开发软件实现机械臂的控制,简单易学,能够快速入门学习人工智能基础知识,启发创新

    2024年02月13日
    浏览(65)
  • 【AI】人工智能复兴的推进器之机器学习

    目录 一、机器学习的定义 二、机器学习的发展历程 2.1 萌芽期(20世纪50年代-60年代) 2.2 符号主义时期(20世纪60年代-80年代) 2.3 统计学习时期(20世纪90年代-21世纪初) 2.4 深度学习时期(21世纪初至今) 三、主要算法 3.1 线性回归(Linear Regression) 3.2 K-均值聚类(K-Means C

    2024年02月04日
    浏览(52)
  • 人工智能基础_机器学习006_有监督机器学习_正规方程的公式推导_最小二乘法_凸函数的判定---人工智能工作笔记0046

    我们来看一下公式的推导这部分比较难一些, 首先要记住公式,这个公式,不用自己理解,知道怎么用就行, 比如这个(mA)T 这个转置的关系要知道 然后我们看这个符号就是求X的导数,X导数的转置除以X的导数,就得到单位矩阵, 可以看到下面也是,各种X的导数,然后计算,得到对应的矩阵

    2024年02月08日
    浏览(58)
  • 数据探索的人工智能与机器学习:如何应用AI技术提高分析效率

    数据探索是数据科学家和机器学习工程师在处理新数据集时所经历的过程。在这个过程中,他们需要理解数据的结构、特征和关系,以便为业务提供有价值的见解。然而,随着数据规模的增加,手动进行这些分析变得越来越困难。因此,人工智能和机器学习技术在数据探索领

    2024年02月20日
    浏览(87)
  • 【Python】人工智能-机器学习——不调库手撕演化算法解决函数最小值问题

    现在有一个函数 3 − s i n 2 ( j x 1 ) − s i n 2 ( j x 2 ) 3-sin^2(jx_1)-sin^2(jx_2) 3 − s i n 2 ( j x 1 ​ ) − s i n 2 ( j x 2 ​ ) ,有两个变量 x 1 x_1 x 1 ​ 和 x 2 x_2 x 2 ​ ,它们的定义域为 x 1 , x 2 ∈ [ 0 , 6 ] x_1,x_2in[0,6] x 1 ​ , x 2 ​ ∈ [ 0 , 6 ] ,并且 j = 2 j=2 j = 2 ,对于此例,所致对于 j =

    2024年01月20日
    浏览(76)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包