自然语言处理从入门到应用——LangChain:链(Chains)-[通用功能:LLMChain、RouterChain和SequentialChain]

这篇具有很好参考价值的文章主要介绍了自然语言处理从入门到应用——LangChain:链(Chains)-[通用功能:LLMChain、RouterChain和SequentialChain]。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类目录:《大模型从入门到应用》总目录

LangChain系列文章:

  • 基础知识
  • 快速入门
    • 安装与环境配置
    • 链(Chains)、代理(Agent:)和记忆(Memory)
    • 快速开发聊天模型
  • 模型(Models)
    • 基础知识
    • 大型语言模型(LLMs)
      • 基础知识
      • LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(Human Input LLM)
      • 缓存LLM的调用结果
      • 加载与保存LLM类、流式传输LLM与Chat Model响应和跟踪tokens使用情况
    • 聊天模型(Chat Models)
      • 基础知识
      • 使用少量示例和响应流式传输
    • 文本嵌入模型
      • Aleph Alpha、Amazon Bedrock、Azure OpenAI、Cohere等
      • Embaas、Fake Embeddings、Google Vertex AI PaLM等
  • 提示(Prompts)
    • 基础知识
    • 提示模板
      • 基础知识
      • 连接到特征存储
      • 创建自定义提示模板和含有Few-Shot示例的提示模板
      • 部分填充的提示模板和提示合成
      • 序列化提示信息
    • 示例选择器(Example Selectors)
    • 输出解析器(Output Parsers)
  • 记忆(Memory)
    • 基础知识
    • 记忆的类型
      • 会话缓存记忆、会话缓存窗口记忆和实体记忆
      • 对话知识图谱记忆、对话摘要记忆和会话摘要缓冲记忆
      • 对话令牌缓冲存储器和基于向量存储的记忆
    • 将记忆添加到LangChain组件中
    • 自定义对话记忆与自定义记忆类
    • 聊天消息记录
    • 记忆的存储与应用
  • 索引(Indexes)
    • 基础知识
    • 文档加载器(Document Loaders)
    • 文本分割器(Text Splitters)
    • 向量存储器(Vectorstores)
    • 检索器(Retrievers)
  • 链(Chains)
    • 基础知识
    • 通用功能
      • 自定义Chain和Chain的异步API
      • LLMChain和RouterChain
      • SequentialChain和TransformationChain
      • 链的保存(序列化)与加载(反序列化)
    • 链与索引
      • 文档分析和基于文档的聊天
      • 问答的基础知识
      • 图问答(Graph QA)和带来源的问答(Q&A with Sources)
      • 检索式问答
      • 文本摘要(Summarization)、HyDE和向量数据库的文本生成
  • 代理(Agents)
    • 基础知识
    • 代理类型
    • 自定义代理(Custom Agent)
    • 自定义MRKL代理
    • 带有ChatModel的LLM聊天自定义代理和自定义多操作代理(Custom MultiAction Agent)
    • 工具
      • 基础知识
      • 自定义工具(Custom Tools)
      • 多输入工具和工具输入模式
      • 人工确认工具验证和Tools作为OpenAI函数
    • 工具包(Toolkit)
    • 代理执行器(Agent Executor)
      • 结合使用Agent和VectorStore
      • 使用Agents的异步API和创建ChatGPT克隆
      • 处理解析错误、访问中间步骤和限制最大迭代次数
      • 为代理程序设置超时时间和限制最大迭代次数和为代理程序和其工具添加共享内存
    • 计划与执行
  • 回调函数(Callbacks)

LLMChain

LLMChain是查询LLM对象最流行的方式之一。它使用提供的输入键值(如果有的话,还包括内存键值)格式化提示模板,将格式化的字符串传递给LLM,并返回LLM的输出。下面我们展示了LLMChain类的附加功能:

from langchain import PromptTemplate, OpenAI, LLMChain

prompt_template = "What is a good name for a company that makes {product}?"

llm = OpenAI(temperature=0)
llm_chain = LLMChain(
    llm=llm,
    prompt=PromptTemplate.from_template(prompt_template)
)
llm_chain("colorful socks")

输出:

{'product': 'colorful socks', 'text': '\n\nSocktastic!'}
LLM链条的额外运行方式

除了所有Chain对象共享的__call__run方法之外,LLMChain还提供了几种调用链条逻辑的方式:

  • apply:允许我们对一组输入运行链:
input_list = [
    {"product": "socks"},
    {"product": "computer"},
    {"product": "shoes"}
]

llm_chain.apply(input_list)
[{'text': '\n\nSocktastic!'},
 {'text': '\n\nTechCore Solutions.'},
 {'text': '\n\nFootwear Factory.'}]
  • generate:与apply类似,但返回一个LLMResult而不是字符串。LLMResult通常包含有用的生成信息,例如令牌使用情况和完成原因。
llm_chain.generate(input_list)

输出:

LLMResult(generations=[[Generation(text='\n\nSocktastic!', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nTechCore Solutions.', generation_info={'finish_reason': 'stop', 'logprobs': None})], [Generation(text='\n\nFootwear Factory.', generation_info={'finish_reason': 'stop', 'logprobs': None})]], llm_output={'token_usage': {'prompt_tokens': 36, 'total_tokens': 55, 'completion_tokens': 19}, 'model_name': 'text-davinci-003'})
  • predict:与run方法类似,只是输入键被指定为关键字参数,而不是Python字典。
# Single input example
llm_chain.predict(product="colorful socks")

输出:

'\n\nSocktastic!'

输入:

# Multiple inputs example

template = """Tell me a {adjective} joke about {subject}."""
prompt = PromptTemplate(template=template, input_variables=["adjective", "subject"])
llm_chain = LLMChain(prompt=prompt, llm=OpenAI(temperature=0))

llm_chain.predict(adjective="sad", subject="ducks")

输出:

'\n\nQ: What did the duck say when his friend died?\nA: Quack, quack, goodbye.'
解析输出结果

默认情况下,即使底层的prompt对象具有输出解析器,LLMChain也不会解析输出结果。如果你想在LLM输出上应用输出解析器,可以使用predict_and_parse代替predict,以及apply_and_parse代替apply

仅使用predict方法:

from langchain.output_parsers import CommaSeparatedListOutputParser

output_parser = CommaSeparatedListOutputParser()
template = """List all the colors in a rainbow"""
prompt = PromptTemplate(template=template, input_variables=[], output_parser=output_parser)
llm_chain = LLMChain(prompt=prompt, llm=llm)

llm_chain.predict()

输出:

'\n\nRed, orange, yellow, green, blue, indigo, violet'

使用predict_and_parser方法:

llm_chain.predict_and_parse()

输出:

['Red', 'orange', 'yellow', 'green', 'blue', 'indigo', 'violet']
从字符串模板初始化

我们还可以直接使用字符串模板构建一个LLMChain。

template = """Tell me a {adjective} joke about {subject}."""
llm_chain = LLMChain.from_string(llm=llm, template=template)
llm_chain.predict(adjective="sad", subject="ducks")

输出:

'\n\nQ: What did the duck say when his friend died?\nA: Quack, quack, goodbye.'

RouterChain

本节演示了如何使用RouterChain创建一个根据给定输入动态选择下一个链条的链条。RouterChain通常由两个组件组成:

  • 路由链本身(负责选择下一个要调用的链条)
  • 目标链条,即路由链可以路由到的链条

本节中,我们将重点介绍不同类型的路由链。我们将展示这些路由链在MultiPromptChain中的应用,创建一个问题回答链条,根据给定的问题选择最相关的提示,然后使用该提示回答问题。

from langchain.chains.router import MultiPromptChain
from langchain.llms import OpenAI
from langchain.chains import ConversationChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
physics_template = """You are a very smart physics professor. \
You are great at answering questions about physics in a concise and easy to understand manner. \
When you don't know the answer to a question you admit that you don't know.

Here is a question:
{input}"""


math_template = """You are a very good mathematician. You are great at answering math questions. \
You are so good because you are able to break down hard problems into their component parts, \
answer the component parts, and then put them together to answer the broader question.

Here is a question:
{input}"""
prompt_infos = [
    {
        "name": "physics", 
        "description": "Good for answering questions about physics", 
        "prompt_template": physics_template
    },
    {
        "name": "math", 
        "description": "Good for answering math questions", 
        "prompt_template": math_template
    }
]
llm = OpenAI()
destination_chains = {}
for p_info in prompt_infos:
    name = p_info["name"]
    prompt_template = p_info["prompt_template"]
    prompt = PromptTemplate(template=prompt_template, input_variables=["input"])
    chain = LLMChain(llm=llm, prompt=prompt)
    destination_chains[name] = chain
default_chain = ConversationChain(llm=llm, output_key="text")
LLMRouterChain

LLMRouterChain链条使用一个LLM来确定如何进行路由。

from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE
destinations = [f"{p['name']}: {p['description']}" for p in prompt_infos]
destinations_str = "\n".join(destinations)
router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(
    destinations=destinations_str
)
router_prompt = PromptTemplate(
    template=router_template,
    input_variables=["input"],
    output_parser=RouterOutputParser(),
)
router_chain = LLMRouterChain.from_llm(llm, router_prompt)
chain = MultiPromptChain(router_chain=router_chain, destination_chains=destination_chains, default_chain=default_chain, verbose=True)
print(chain.run("What is black body radiation?"))

日志输出:

> Entering new MultiPromptChain chain...
physics: {'input': 'What is black body radiation?'}
> Finished chain.

输出:

Black body radiation is the term used to describe the electromagnetic radiation emitted by a “black body”—an object that absorbs all radiation incident upon it. A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. It does not reflect, emit or transmit energy. This type of radiation is the result of the thermal motion of the body's atoms and molecules, and it is emitted at all wavelengths. The spectrum of radiation emitted is described by Planck's law and is known as the black body spectrum.

输入:

print(chain.run("What is the first prime number greater than 40 such that one plus the prime number is divisible by 3"))

输出:

> Entering new MultiPromptChain chain...
math: {'input': 'What is the first prime number greater than 40 such that one plus the prime number is divisible by 3'}
> Finished chain.

输出:

The answer is 43. One plus 43 is 44 which is divisible by 3.

输入:

print(chain.run("What is the name of the type of cloud that rins"))

日志输出:

> Entering new MultiPromptChain chain...
None: {'input': 'What is the name of the type of cloud that rains?'}
> Finished chain.

输出:

The type of cloud that rains is called a cumulonimbus cloud. It is a tall and dense cloud that is often accompanied by thunder and lightning.
EmbeddingRouterChain

EmbeddingRouterChain使用嵌入和相似性来在目标链条之间进行路由。

from langchain.chains.router.embedding_router import EmbeddingRouterChain
from langchain.embeddings import CohereEmbeddings
from langchain.vectorstores import Chroma
names_and_descriptions = [
    ("physics", ["for questions about physics"]),
    ("math", ["for questions about math"]),
]
router_chain = EmbeddingRouterChain.from_names_and_descriptions(
    names_and_descriptions, Chroma, CohereEmbeddings(), routing_keys=["input"]
)
chain = MultiPromptChain(router_chain=router_chain, destination_chains=destination_chains, default_chain=default_chain, verbose=True)
print(chain.run("What is black body radiation?"))

日志输出:

> Entering new MultiPromptChain chain...
physics: {'input': 'What is black body radiation?'}
> Finished chain.

输出:

Black body radiation is the emission of energy from an idealized physical body (known as a black body) that is in thermal equilibrium with its environment. It is emitted in a characteristic pattern of frequencies known as a black-body spectrum, which depends only on the temperature of the body. The study of black body radiation is an important part of astrophysics and atmospheric physics, as the thermal radiation emitted by stars and planets can often be approximated as black body radiation.

输入:

print(chain.run("What is the first prime number greater than 40 such that one plus the prime number is divisible by 3"))

日志输出:

> Entering new MultiPromptChain chain...
math: {'input': 'What is the first prime number greater than 40 such that one plus the prime number is divisible by 3'}
> Finished chain.

输出:

Answer: The first prime number greater than 40 such that one plus the prime number is divisible by 3 is 43.

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/文章来源地址https://www.toymoban.com/news/detail-663152.html

到了这里,关于自然语言处理从入门到应用——LangChain:链(Chains)-[通用功能:LLMChain、RouterChain和SequentialChain]的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自然语言处理从入门到应用——LangChain:链(Chains)-[通用功能:链的保存(序列化)与加载(反序列化)]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月11日
    浏览(44)
  • 自然语言处理从入门到应用——LangChain:快速入门-[快速开发聊天模型]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月15日
    浏览(45)
  • 自然语言处理从入门到应用——LangChain:快速入门-[安装与环境配置]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月13日
    浏览(91)
  • 自然语言处理从入门到应用——LangChain:基础知识与介绍

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月13日
    浏览(90)
  • 自然语言处理从入门到应用——LangChain:代理(Agents)-[代理类型]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月15日
    浏览(58)
  • 自然语言处理从入门到应用——LangChain:代理(Agents)-[基础知识]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月13日
    浏览(78)
  • 自然语言处理从入门到应用——LangChain:记忆(Memory)-[基础知识]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月14日
    浏览(97)
  • 自然语言处理从入门到应用——LangChain:提示(Prompts)-[基础知识]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月15日
    浏览(54)
  • 自然语言处理从入门到应用——LangChain:索引(Indexes)-[基础知识]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月12日
    浏览(55)
  • 自然语言处理从入门到应用——LangChain:记忆(Memory)-[聊天消息记录]

    分类目录:《大模型从入门到应用》总目录 LangChain系列文章: 基础知识 快速入门 安装与环境配置 链(Chains)、代理(Agent:)和记忆(Memory) 快速开发聊天模型 模型(Models) 基础知识 大型语言模型(LLMs) 基础知识 LLM的异步API、自定义LLM包装器、虚假LLM和人类输入LLM(

    2024年02月12日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包