基于PaddlePaddle实现的声纹识别系统

这篇具有很好参考价值的文章主要介绍了基于PaddlePaddle实现的声纹识别系统。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

本项目使用了EcapaTdnn、ResNetSE、ERes2Net、CAM++等多种先进的声纹识别模型,不排除以后会支持更多模型,同时本项目也支持了MelSpectrogram、Spectrogram、MFCC、Fbank等多种数据预处理方法,使用了ArcFace Loss,ArcFace loss:Additive Angular Margin Loss(加性角度间隔损失函数),对应项目中的AAMLoss,对特征向量和权重归一化,对θ加上角度间隔m,角度间隔比余弦间隔在对角度的影响更加直接,除此之外,还支持AMLoss、ARMLoss、CELoss等多种损失函数。

源码地址:VoiceprintRecognition-PaddlePaddle

使用环境:

  • Anaconda 3
  • Python 3.8
  • PaddlePaddle 2.4.1
  • Windows 10 or Ubuntu 18.04

项目特性

  1. 支持模型:EcapaTdnn、TDNN、Res2Net、ResNetSE、ERes2Net、CAM++
  2. 支持池化层:AttentiveStatsPool(ASP)、SelfAttentivePooling(SAP)、TemporalStatisticsPooling(TSP)、TemporalAveragePooling(TAP)、TemporalStatsPool(TSTP)
  3. 支持损失函数:AAMLoss、AMLoss、ARMLoss、CELoss
  4. 支持预处理方法:MelSpectrogram、Spectrogram、MFCC、Fbank

模型论文:

  • EcapaTdnn:ECAPA-TDNN: Emphasized Channel Attention, Propagation and Aggregation in TDNN Based Speaker Verification
  • TDNN:Prediction of speech intelligibility with DNN-based performance measures
  • Res2Net:Res2Net: A New Multi-scale Backbone Architecture
  • ResNetSE:Squeeze-and-Excitation Networks
  • CAMPPlus:CAM++: A Fast and Efficient Network for Speaker Verification Using Context-Aware Masking
  • ERes2Net:An Enhanced Res2Net with Local and Global Feature Fusion for Speaker Verification

模型下载

训练CN-Celeb数据,共有2796个说话人。

模型 Params(M) 预处理方法 数据集 train speakers threshold EER MinDCF 模型下载
CAM++ 7.5 Fbank CN-Celeb 2796 0.25 0.09485 0.56214 加入知识星球获取
ERes2Net 8.2 Fbank CN-Celeb 2796 0.22 0.09637 0.52627 加入知识星球获取
ResNetSE 10.7 Fbank CN-Celeb 2796 0.19 0.10222 0.57981 加入知识星球获取
EcapaTdnn 6.7 Fbank CN-Celeb 2796 0.25 0.10465 0.58521 加入知识星球获取
TDNN 3.2 Fbank CN-Celeb 2796 0.23 0.11804 0.61070 加入知识星球获取
Res2Net 7.2 Fbank CN-Celeb 2796 0.18 0.14126 0.68511 加入知识星球获取
CAM++ 7.5 Fbank 更大数据集 2W+ 0.34 0.07884 0.52738 加入知识星球获取
ERes2Net 8.2 Fbank 其他数据集 20W 0.36 0.02939 0.18355 加入知识星球获取
CAM++ 7.5 Flank 其他数据集 20W 0.29 0.04768 0.31429 加入知识星球获取

说明:

  1. 评估的测试集为CN-Celeb的测试集,包含196个说话人。
  2. 使用语速增强分类大小翻三倍speed_perturb_3_class: True
  3. 参数数量不包含了分类器的参数数量。

训练VoxCeleb1&2数据,共有7205个说话人。

模型 Params(M) 预处理方法 数据集 train speakers threshold EER MinDCF 模型下载
CAM++ 6.8 Fbank VoxCeleb1&2 7205 加入知识星球获取
ERes2Net 6.6 Fbank VoxCeleb1&2 7205 加入知识星球获取
ResNetSE 7.8 Fbank VoxCeleb1&2 7205 加入知识星球获取
EcapaTdnn 6.1 Fbank VoxCeleb1&2 7205 加入知识星球获取
TDNN 2.6 Fbank VoxCeleb1&2 7205 加入知识星球获取
Res2Net 5.0 Fbank VoxCeleb1&2 7205 加入知识星球获取
CAM++ 6.8 Fbank 更大数据集 2W+ 加入知识星球获取
ERes2Net 55.1 Fbank 其他数据集 20W+ 加入知识星球获取
CAM++ 6.8 Fbank 其他数据集 20W+ 加入知识星球获取

说明:

  1. 评估的测试集为VoxCeleb1&2的测试集,包含158个说话人。
  2. 使用语速增强分类大小翻三倍speed_perturb_3_class: True
  3. 参数数量不包含了分类器的参数数量。

安装环境

  • 首先安装的是PaddlePaddle的GPU版本,如果已经安装过了,请跳过。
conda install paddlepaddle-gpu==2.4.1 cudatoolkit=10.2 --channel https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
  • 安装ppvector库。

使用pip安装,命令如下:

python -m pip install ppvector -U -i https://pypi.tuna.tsinghua.edu.cn/simple

建议源码安装,源码安装能保证使用最新代码。

git clone https://github.com/yeyupiaoling/VoiceprintRecognition_PaddlePaddle.git
cd VoiceprintRecognition_PaddlePaddle/
python setup.py install

修改预处理方法

配置文件中默认使用的是Fbank预处理方法,如果要使用其他预处理方法,可以修改配置文件中的安装下面方式修改,具体的值可以根据自己情况修改。如果不清楚如何设置参数,可以直接删除该部分,直接使用默认值。

# 数据预处理参数
preprocess_conf:
  # 音频预处理方法,支持:LogMelSpectrogram、MelSpectrogram、Spectrogram、MFCC、Fbank
  feature_method: 'Fbank'
  # 设置API参数,更参数查看对应API,不清楚的可以直接删除该部分,直接使用默认值
  method_args:
    sr: 16000
    n_mels: 80

训练模型

使用train.py训练模型,本项目支持多个音频预处理方式,通过configs/ecapa_tdnn.yml配置文件的参数preprocess_conf.feature_method可以指定,MelSpectrogram为梅尔频谱,Spectrogram为语谱图,MFCC梅尔频谱倒谱系数。通过参数augment_conf_path可以指定数据增强方式。训练过程中,会使用VisualDL保存训练日志,通过启动VisualDL可以随时查看训练结果,启动命令visualdl --logdir=log --host 0.0.0.0

# 单卡训练
CUDA_VISIBLE_DEVICES=0 python train.py
# 多卡训练
python -m paddle.distributed.launch --gpus '0,1' train.py

训练输出日志:

[2023-08-05 09:52:06.497988 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-08-05 09:52:06.498094 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-08-05 09:52:06.498149 INFO   ] utils:print_arguments:15 - do_eval: True
[2023-08-05 09:52:06.498191 INFO   ] utils:print_arguments:15 - local_rank: 0
[2023-08-05 09:52:06.498230 INFO   ] utils:print_arguments:15 - pretrained_model: None
[2023-08-05 09:52:06.498269 INFO   ] utils:print_arguments:15 - resume_model: None
[2023-08-05 09:52:06.498306 INFO   ] utils:print_arguments:15 - save_model_path: models/
[2023-08-05 09:52:06.498342 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-08-05 09:52:06.498378 INFO   ] utils:print_arguments:16 - ------------------------------------------------
[2023-08-05 09:52:06.513761 INFO   ] utils:print_arguments:18 - ----------- 配置文件参数 -----------
[2023-08-05 09:52:06.513906 INFO   ] utils:print_arguments:21 - dataset_conf:
[2023-08-05 09:52:06.513957 INFO   ] utils:print_arguments:24 -         dataLoader:
[2023-08-05 09:52:06.513995 INFO   ] utils:print_arguments:26 -                 batch_size: 64
[2023-08-05 09:52:06.514031 INFO   ] utils:print_arguments:26 -                 num_workers: 4
[2023-08-05 09:52:06.514066 INFO   ] utils:print_arguments:28 -         do_vad: False
[2023-08-05 09:52:06.514101 INFO   ] utils:print_arguments:28 -         enroll_list: dataset/enroll_list.txt
[2023-08-05 09:52:06.514135 INFO   ] utils:print_arguments:24 -         eval_conf:
[2023-08-05 09:52:06.514169 INFO   ] utils:print_arguments:26 -                 batch_size: 1
[2023-08-05 09:52:06.514203 INFO   ] utils:print_arguments:26 -                 max_duration: 20
[2023-08-05 09:52:06.514237 INFO   ] utils:print_arguments:28 -         max_duration: 3
[2023-08-05 09:52:06.514274 INFO   ] utils:print_arguments:28 -         min_duration: 0.5
[2023-08-05 09:52:06.514308 INFO   ] utils:print_arguments:28 -         noise_aug_prob: 0.2
[2023-08-05 09:52:06.514342 INFO   ] utils:print_arguments:28 -         noise_dir: dataset/noise
[2023-08-05 09:52:06.514374 INFO   ] utils:print_arguments:28 -         num_speakers: 3242
[2023-08-05 09:52:06.514408 INFO   ] utils:print_arguments:28 -         sample_rate: 16000
[2023-08-05 09:52:06.514441 INFO   ] utils:print_arguments:28 -         speed_perturb: True
[2023-08-05 09:52:06.514475 INFO   ] utils:print_arguments:28 -         target_dB: -20
[2023-08-05 09:52:06.514508 INFO   ] utils:print_arguments:28 -         train_list: dataset/train_list.txt
[2023-08-05 09:52:06.514542 INFO   ] utils:print_arguments:28 -         trials_list: dataset/trials_list.txt
[2023-08-05 09:52:06.514575 INFO   ] utils:print_arguments:28 -         use_dB_normalization: True
[2023-08-05 09:52:06.514609 INFO   ] utils:print_arguments:21 - loss_conf:
[2023-08-05 09:52:06.514643 INFO   ] utils:print_arguments:24 -         args:
[2023-08-05 09:52:06.514678 INFO   ] utils:print_arguments:26 -                 easy_margin: False
[2023-08-05 09:52:06.514713 INFO   ] utils:print_arguments:26 -                 margin: 0.2
[2023-08-05 09:52:06.514746 INFO   ] utils:print_arguments:26 -                 scale: 32
[2023-08-05 09:52:06.514779 INFO   ] utils:print_arguments:24 -         margin_scheduler_args:
[2023-08-05 09:52:06.514814 INFO   ] utils:print_arguments:26 -                 final_margin: 0.3
[2023-08-05 09:52:06.514848 INFO   ] utils:print_arguments:28 -         use_loss: AAMLoss
[2023-08-05 09:52:06.514882 INFO   ] utils:print_arguments:28 -         use_margin_scheduler: True
[2023-08-05 09:52:06.514915 INFO   ] utils:print_arguments:21 - model_conf:
[2023-08-05 09:52:06.514950 INFO   ] utils:print_arguments:24 -         backbone:
[2023-08-05 09:52:06.514984 INFO   ] utils:print_arguments:26 -                 embd_dim: 192
[2023-08-05 09:52:06.515017 INFO   ] utils:print_arguments:26 -                 pooling_type: ASP
[2023-08-05 09:52:06.515050 INFO   ] utils:print_arguments:24 -         classifier:
[2023-08-05 09:52:06.515084 INFO   ] utils:print_arguments:26 -                 num_blocks: 0
[2023-08-05 09:52:06.515118 INFO   ] utils:print_arguments:21 - optimizer_conf:
[2023-08-05 09:52:06.515154 INFO   ] utils:print_arguments:28 -         learning_rate: 0.001
[2023-08-05 09:52:06.515188 INFO   ] utils:print_arguments:28 -         optimizer: Adam
[2023-08-05 09:52:06.515221 INFO   ] utils:print_arguments:28 -         scheduler: CosineAnnealingLR
[2023-08-05 09:52:06.515254 INFO   ] utils:print_arguments:28 -         scheduler_args: None
[2023-08-05 09:52:06.515289 INFO   ] utils:print_arguments:28 -         weight_decay: 1e-06
[2023-08-05 09:52:06.515323 INFO   ] utils:print_arguments:21 - preprocess_conf:
[2023-08-05 09:52:06.515357 INFO   ] utils:print_arguments:28 -         feature_method: MelSpectrogram
[2023-08-05 09:52:06.515390 INFO   ] utils:print_arguments:24 -         method_args:
[2023-08-05 09:52:06.515426 INFO   ] utils:print_arguments:26 -                 f_max: 14000.0
[2023-08-05 09:52:06.515460 INFO   ] utils:print_arguments:26 -                 f_min: 50.0
[2023-08-05 09:52:06.515493 INFO   ] utils:print_arguments:26 -                 hop_length: 320
[2023-08-05 09:52:06.515527 INFO   ] utils:print_arguments:26 -                 n_fft: 1024
[2023-08-05 09:52:06.515560 INFO   ] utils:print_arguments:26 -                 n_mels: 64
[2023-08-05 09:52:06.515593 INFO   ] utils:print_arguments:26 -                 sample_rate: 16000
[2023-08-05 09:52:06.515626 INFO   ] utils:print_arguments:26 -                 win_length: 1024
[2023-08-05 09:52:06.515660 INFO   ] utils:print_arguments:21 - train_conf:
[2023-08-05 09:52:06.515694 INFO   ] utils:print_arguments:28 -         log_interval: 100
[2023-08-05 09:52:06.515728 INFO   ] utils:print_arguments:28 -         max_epoch: 30
[2023-08-05 09:52:06.515761 INFO   ] utils:print_arguments:30 - use_model: EcapaTdnn
[2023-08-05 09:52:06.515794 INFO   ] utils:print_arguments:31 - ------------------------------------------------
----------------------------------------------------------------------------------------
        Layer (type)             Input Shape          Output Shape         Param #    
========================================================================================
          Conv1D-2              [[1, 64, 102]]        [1, 512, 98]         164,352    
          Conv1d-1              [[1, 64, 98]]         [1, 512, 98]            0       
           ReLU-1               [[1, 512, 98]]        [1, 512, 98]            0       
       BatchNorm1D-2            [[1, 512, 98]]        [1, 512, 98]          2,048     
       BatchNorm1d-1            [[1, 512, 98]]        [1, 512, 98]            0       
        TDNNBlock-1             [[1, 64, 98]]         [1, 512, 98]            0       
          Conv1D-4              [[1, 512, 98]]        [1, 512, 98]         262,656    
          Conv1d-3              [[1, 512, 98]]        [1, 512, 98]            0       
           ReLU-2               [[1, 512, 98]]        [1, 512, 98]            0       
       BatchNorm1D-4            [[1, 512, 98]]        [1, 512, 98]          2,048     
       BatchNorm1d-3            [[1, 512, 98]]        [1, 512, 98]            0       
        TDNNBlock-2             [[1, 512, 98]]        [1, 512, 98]            0       
··········································
         SEBlock-3           [[1, 512, 98], None]     [1, 512, 98]            0       
      SERes2NetBlock-3          [[1, 512, 98]]        [1, 512, 98]            0       
         Conv1D-70             [[1, 1536, 98]]       [1, 1536, 98]        2,360,832   
         Conv1d-69             [[1, 1536, 98]]       [1, 1536, 98]            0       
          ReLU-32              [[1, 1536, 98]]       [1, 1536, 98]            0       
       BatchNorm1D-58          [[1, 1536, 98]]       [1, 1536, 98]          6,144     
       BatchNorm1d-57          [[1, 1536, 98]]       [1, 1536, 98]            0       
        TDNNBlock-29           [[1, 1536, 98]]       [1, 1536, 98]            0       
         Conv1D-72             [[1, 4608, 98]]        [1, 128, 98]         589,952    
         Conv1d-71             [[1, 4608, 98]]        [1, 128, 98]            0       
          ReLU-33               [[1, 128, 98]]        [1, 128, 98]            0       
       BatchNorm1D-60           [[1, 128, 98]]        [1, 128, 98]           512      
       BatchNorm1d-59           [[1, 128, 98]]        [1, 128, 98]            0       
        TDNNBlock-30           [[1, 4608, 98]]        [1, 128, 98]            0       
           Tanh-1               [[1, 128, 98]]        [1, 128, 98]            0       
         Conv1D-74              [[1, 128, 98]]       [1, 1536, 98]         198,144    
         Conv1d-73              [[1, 128, 98]]       [1, 1536, 98]            0       
AttentiveStatisticsPooling-1   [[1, 1536, 98]]        [1, 3072, 1]            0       
       BatchNorm1D-62           [[1, 3072, 1]]        [1, 3072, 1]         12,288     
       BatchNorm1d-61           [[1, 3072, 1]]        [1, 3072, 1]            0       
         Conv1D-76              [[1, 3072, 1]]        [1, 192, 1]          590,016    
         Conv1d-75              [[1, 3072, 1]]        [1, 192, 1]             0       
        EcapaTdnn-1             [[1, 98, 64]]           [1, 192]              0       
  SpeakerIdentification-1         [[1, 192]]           [1, 9726]          1,867,392   
========================================================================================
Total params: 8,039,808
Trainable params: 8,020,480
Non-trainable params: 19,328
----------------------------------------------------------------------------------------
Input size (MB): 0.02
Forward/backward pass size (MB): 35.60
Params size (MB): 30.67
Estimated Total Size (MB): 66.30
----------------------------------------------------------------------------------------
[2023-08-05 09:52:08.084231 INFO   ] trainer:train:388 - 训练数据:874175
[2023-08-05 09:52:09.186542 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [0/13659], loss: 11.95824, accuracy: 0.00000, learning rate: 0.00100000, speed: 58.09 data/sec, eta: 5 days, 5:24:08
[2023-08-05 09:52:22.477905 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [100/13659], loss: 10.35675, accuracy: 0.00278, learning rate: 0.00100000, speed: 481.65 data/sec, eta: 15:07:15
[2023-08-05 09:52:35.948581 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [200/13659], loss: 10.22089, accuracy: 0.00505, learning rate: 0.00100000, speed: 475.27 data/sec, eta: 15:19:12
[2023-08-05 09:52:49.249098 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [300/13659], loss: 10.00268, accuracy: 0.00706, learning rate: 0.00100000, speed: 481.45 data/sec, eta: 15:07:11
[2023-08-05 09:53:03.716015 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [400/13659], loss: 9.76052, accuracy: 0.00830, learning rate: 0.00100000, speed: 442.74 data/sec, eta: 16:26:16
[2023-08-05 09:53:18.258807 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [500/13659], loss: 9.50189, accuracy: 0.01060, learning rate: 0.00100000, speed: 440.46 data/sec, eta: 16:31:08
[2023-08-05 09:53:31.618354 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [600/13659], loss: 9.26083, accuracy: 0.01256, learning rate: 0.00100000, speed: 479.50 data/sec, eta: 15:10:12
[2023-08-05 09:53:45.439642 INFO   ] trainer:__train_epoch:334 - Train epoch: [1/30], batch: [700/13659], loss: 9.03548, accuracy: 0.01449, learning rate: 0.00099999, speed: 463.63 data/sec, eta: 15:41:08

VisualDL页面:
基于PaddlePaddle实现的声纹识别系统,语音,PaddlePaddle,深度学习,paddlepaddle,人工智能,声纹识别,深度学习

评估模型

训练结束之后会保存预测模型,我们用预测模型来预测测试集中的音频特征,然后使用音频特征进行两两对比,计算EER和MinDCF。

python eval.py

输出类似如下:

······
------------------------------------------------
W0425 08:27:32.057426 17654 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:27:32.065165 17654 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2023-03-16 20:20:47.195908 INFO   ] trainer:evaluate:341 - 成功加载模型:models/EcapaTdnn_Fbank/best_model/model.pth
100%|███████████████████████████| 84/84 [00:28<00:00,  2.95it/s]
开始两两对比音频特征...
100%|███████████████████████████| 5332/5332 [00:05<00:00, 1027.83it/s]
评估消耗时间:65s,threshold:0.26,EER: 0.14739, MinDCF: 0.41999

声纹对比

下面开始实现声纹对比,创建infer_contrast.py程序,编写infer()函数,在编写模型的时候,模型是有两个输出的,第一个是模型的分类输出,第二个是音频特征输出。所以在这里要输出的是音频的特征值,有了音频的特征值就可以做声纹识别了。我们输入两个语音,通过预测函数获取他们的特征数据,使用这个特征数据可以求他们的对角余弦值,得到的结果可以作为他们相识度。对于这个相识度的阈值threshold,读者可以根据自己项目的准确度要求进行修改。

python infer_contrast.py --audio_path1=audio/a_1.wav --audio_path2=audio/b_2.wav

输出类似如下:

[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - audio_path1: dataset/a_1.wav
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - audio_path2: dataset/b_2.wav
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:30:48.009149 INFO   ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:29:10.006249 21121 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:29:10.008555 21121 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pdparams
audio/a_1.wav 和 audio/b_2.wav 不是同一个人,相似度为:-0.09565544128417969

同时还提供了有GUI界面的声纹对比程序,执行infer_contrast_gui.py启动程序,界面如下,分别选择两个音频,点击开始判断,就可以判断它们是否是同一个人。

基于PaddlePaddle实现的声纹识别系统,语音,PaddlePaddle,深度学习,paddlepaddle,人工智能,声纹识别,深度学习

声纹识别

在上面的声纹对比的基础上,我们创建infer_recognition.py实现声纹识别。同样是使用上面声纹对比的infer()预测函数,通过这两个同样获取语音的特征数据。 不同的是笔者增加了load_audio_db()register(),以及recognition(),第一个函数是加载声纹库中的语音数据,这些音频就是相当于已经注册的用户,他们注册的语音数据会存放在这里,如果有用户需要通过声纹登录,就需要拿到用户的语音和语音库中的语音进行声纹对比,如果对比成功,那就相当于登录成功并且获取用户注册时的信息数据。第二个函数register()其实就是把录音保存在声纹库中,同时获取该音频的特征添加到待对比的数据特征中。最后recognition()函数中,这个函数就是将输入的语音和语音库中的语音一一对比。
有了上面的声纹识别的函数,读者可以根据自己项目的需求完成声纹识别的方式,例如笔者下面提供的是通过录音来完成声纹识别。首先必须要加载语音库中的语音,语音库文件夹为audio_db,然后用户回车后录音3秒钟,然后程序会自动录音,并使用录音到的音频进行声纹识别,去匹配语音库中的语音,获取用户的信息。通过这样方式,读者也可以修改成通过服务请求的方式完成声纹识别,例如提供一个API供APP调用,用户在APP上通过声纹登录时,把录音到的语音发送到后端完成声纹识别,再把结果返回给APP,前提是用户已经使用语音注册,并成功把语音数据存放在audio_db文件夹中。

python infer_recognition.py

输出类似如下:

[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:13 - ----------- 额外配置参数 -----------
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - audio_db_path: audio_db/
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - configs: configs/ecapa_tdnn.yml
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - model_path: models/EcapaTdnn_Fbank/best_model/
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - record_seconds: 3
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - threshold: 0.6
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:15 - use_gpu: True
[2023-04-02 18:31:20.521040 INFO   ] utils:print_arguments:16 - ------------------------------------------------
······································································
W0425 08:30:13.257884 23889 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.5, Driver API Version: 11.6, Runtime API Version: 10.2
W0425 08:30:13.260191 23889 device_context.cc:465] device: 0, cuDNN Version: 7.6.
成功加载模型参数和优化方法参数:models/ecapa_tdnn/model.pdparams
Loaded 沙瑞金 audio.
Loaded 李达康 audio.
请选择功能,0为注册音频到声纹库,1为执行声纹识别:0
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
请输入该音频用户的名称:夜雨飘零
请选择功能,0为注册音频到声纹库,1为执行声纹识别:1
按下回车键开机录音,录音3秒中:
开始录音......
录音已结束!
识别说话的为:夜雨飘零,相似度为:0.920434

同时还提供了有GUI界面的声纹识别程序,执行infer_recognition_gui.py启动,点击注册音频到声纹库按钮,理解开始说话,录制3秒钟,然后输入注册人的名称,之后可以执行声纹识别按钮,然后立即说话,录制3秒钟后,等待识别结果。删除用户按钮可以删除用户。实时识别按钮可以实时识别,可以一直录音,一直识别。

基于PaddlePaddle实现的声纹识别系统,语音,PaddlePaddle,深度学习,paddlepaddle,人工智能,声纹识别,深度学习文章来源地址https://www.toymoban.com/news/detail-663249.html

其他版本

  • Tensorflow:VoiceprintRecognition-Tensorflow
  • Pytorch:VoiceprintRecognition-Pytorch
  • Keras:VoiceprintRecognition-Keras

参考资料

  1. https://github.com/PaddlePaddle/PaddleSpeech
  2. https://github.com/yeyupiaoling/PaddlePaddle-MobileFaceNets
  3. https://github.com/yeyupiaoling/PPASR

到了这里,关于基于PaddlePaddle实现的声纹识别系统的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 百度飞桨(PaddlePaddle) - PP-OCRv3 文字检测识别系统 基于 Paddle Serving快速使用(服务化部署 - CentOS 7)

    目录 Paddle Serving服务化部署实战 准备预测数据和部署环境 环境准备 安装 PaddlePaddle 2.0 安装 PaddleOCR 准备PaddleServing的运行环境, 模型转换 Paddle Serving pipeline部署 确认工作目录下文件结构: 启动服务可运行如下命令: 测试 Python发送服务请求: Postman 发送请求 参数调整 百度飞

    2024年02月07日
    浏览(57)
  • 基于matlab的语音识别系统

    一 . 设计任务及要求 1.1设计任务 作为智能计算机研究的主导方向和人机语音通信的关键技术,语音识别技 术一直受到各国科学界的广泛关注。以语音识别开发出的产品应用领域非常广泛,有声控电话交换、语音拨号系统、信息网络查询、家庭服务、宾馆服务、 旅行社服务

    2024年01月17日
    浏览(43)
  • 基于Python的语音识别系统

    基于Python的语音识别系统的设计与实现 摘 要 随着互联网的发展,语音文件成为了人们接触得越来越多文件。如何高效的从一段录音中提取出关键信息,提取出其中人们感兴趣的内容,直观的呈现给人门。本文以DFSMN作为声学模型,引入TensorFlowr模型,将语音识别转化为翻译任

    2024年02月10日
    浏览(35)
  • 基于Matlab的语音识别系统设计

      本文主要介绍并运用了高斯混合模型(GMM)和MFCC(Mel频率倒谱系数)这两个算法来实现语音识别的过程。用高斯函数最大程度的近似表示信号的概率。首先,对语音信号进行预处理;其次通过Mel倒谱系数MFCC提取语音特征参数;设置一个模板库,用来存储大量并已提取特

    2024年02月04日
    浏览(33)
  • 基于Pytorch的语音情感识别系统

    大家好,我是阿光。 本专栏整理了《PyTorch深度学习项目实战100例》,内包含了各种不同的深度学习项目,包含项目原理以及源码,每一个项目实例都附带有完整的代码+数据集。 正在更新中~ ✨ 🚨 我的项目环境: 平台:Windows10 语言环境:python3.7 编译器:PyCharm PyTorch版本:

    2024年02月06日
    浏览(46)
  • 基于树莓派构建深度学习语音识别系统

    +v hezkz17进数字音频系统研究开发交流答疑裙   1 Linux 音频框架如何做语音识别系统?   要在Linux上构建一个语音识别系统,可以使用以下步骤和工具: 安装音频框架:在Linux上运行语音识别系统需要一个适当的音频框架。常见的选择包括 ALSA(Advanced Linux Sound Architecture)和

    2024年02月15日
    浏览(46)
  • 基于百度语音识别API智能语音识别和字幕推荐系统——深度学习算法应用(含全部工程源码)+测试数据集

    本项目基于百度语音识别API,结合了语音识别、视频转换音频识别以及语句停顿分割识别等多种技术,从而实现了高效的视频字幕生成。 首先,我们采用百度语音识别API,通过对语音内容进行分析,将音频转换成文本。这个步骤使得我们能够从语音中提取出有意义的文本信息

    2024年02月13日
    浏览(55)
  • Pytorch 实现语音识别系统

    作者:禅与计算机程序设计艺术 近年来,随着科技的飞速发展,人工智能(AI)领域也逐渐进入高速发展的时代。随着深度学习的火热,机器学习模型已经不再局限于图像分类、文本分类等简单任务,而是应用到各种各样的领域。因此,语音识别(ASR)系统成为了未来人工智

    2024年02月07日
    浏览(39)
  • 基于TensorFlow实现的自动语音识别(附项目资源)

    目录 0 概要 1 自动语音识别 1.1 简介 1.2 技术原理 1.3 数据集 2 实现 2.1 导入依赖库 2.2 加载数据集 2.2.1 加载文本标注路径并查看 2.2.2 提取文本标注和语音文件路径,保留中文并去掉空格 2.3 音频数据的加载、处理和可视化 2.4 建立字典 2.5 划分数据集 2.5.1 划分训练数据和测试

    2024年02月04日
    浏览(50)
  • 基于深度学习的语音识别算法的设计与实现

    收藏和点赞,您的关注是我创作的动力   语音识别(Speech Recognition)是一种让机器通过识别音频把语音信号转变为相 应的文本或命令的技术语音识别技术主要有模式匹配识别法,声学特征提取,声学模型 建模 ,语言模型建模等技术组成。借助机器学习领域中的深度学习的

    2024年02月06日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包