数学建模及数据分析 || 4. 深度学习应用案例分享

这篇具有很好参考价值的文章主要介绍了数学建模及数据分析 || 4. 深度学习应用案例分享。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

PyTorch 深度学习全连接网络分类

1. 非线性二分类

import sklearn.datasets #数据集
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score

import torch
import numpy as np
import matplotlib.pyplot as plt
import torch.nn as nn

np.random.seed(0) #设置随机数种子
X, Y = sklearn. datasets. make_moons (200, noise=0.2) # 生成内组半圆形数据

arg = np.squeeze(np.argwhere(Y==0),axis = 1) # 获取第1类数据索引
arg2 = np.squeeze(np.argwhere (Y==1), axis = 1) # 获取第2类数据索引
plt.title("moons data") 
plt.scatter(X[arg,0], X[arg, 1], s=100, c='b' , marker='+' , label='data1')
plt.scatter(X[arg2,0], X[arg2, 1], s=40, c='r' ,marker='o' , label= 'data2')
plt.legend()
plt.show()

数学建模及数据分析 || 4. 深度学习应用案例分享,数学建模与数据分析,数学建模,数据分析,深度学习

#继承nn.Module类,构建网络模型
class LogicNet(nn.Module):
    def __init__(self,inputdim,hiddendim,outputdim):#初始化网络结构
        super(LogicNet,self).__init__()
        self.Linear1 = nn.Linear(inputdim,hiddendim) #定义全连接层
        self.Linear2 = nn.Linear(hiddendim,outputdim)#定义全连接层
        self.criterion = nn.CrossEntropyLoss() #定义交叉熵函数

    def forward(self,x): #搭建用两层全连接组成的网络模型
        x = self.Linear1(x)#将输入数据传入第1层
        x = torch.tanh(x)#对第一层的结果进行非线性变换
        x = self.Linear2(x)#再将数据传入第2层
#        print("LogicNet")
        return x

    def predict(self,x):#实现LogicNet类的预测接口
        #调用自身网络模型,并对结果进行softmax处理,分别得出预测数据属于每一类的概率
        pred = torch.softmax(self.forward(x),dim=1)
        return torch.argmax(pred,dim=1)  #返回每组预测概率中最大的索引

    def getloss(self,x,y): #实现LogicNet类的损失值计算接口
        y_pred = self.forward(x)
        loss = self.criterion(y_pred,y)#计算损失值得交叉熵
        return loss
    
model = LogicNet(inputdim=2,hiddendim=3,outputdim=2)
optimizer = torch.optim.Adam(model.parameters(),lr=0.01)
def moving_average(a, w=10):#定义函数计算移动平均损失值
    if len(a) < w:
        return a[:]
    return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]

def plot_losses(losses):
    avgloss= moving_average(losses) #获得损失值的移动平均值
    plt.figure(1)
    plt.subplot(211)
    plt.plot(range(len(avgloss)), avgloss, 'b--')
    plt.xlabel('step number')
    plt.ylabel('Training loss')
    plt.title('step number vs. Training loss')
    plt.show()
def predict(model,x):   #封装支持Numpy的预测接口
    x = torch.from_numpy(x).type(torch.FloatTensor)
    ans = model.predict(x)
    return ans.numpy()

def plot_decision_boundary(pred_func,X,Y):#在直角坐标系中可视化模型能力
    #计算取值范围
    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    h = 0.01
    #在坐标系中采用数据,生成网格矩阵,用于输入模型
    xx,yy=np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    #将数据输入并进行预测
    Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    #将预测的结果可视化
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.title("Linear predict")
    arg = np.squeeze(np.argwhere(Y==0),axis = 1)
    arg2 = np.squeeze(np.argwhere(Y==1),axis = 1)
    plt.scatter(X[arg,0], X[arg,1], s=100,c='b',marker='+')
    plt.scatter(X[arg2,0], X[arg2,1],s=40, c='r',marker='o')
    plt.show()
if __name__ == '__main__':
    xt = torch.from_numpy(X).type(torch.FloatTensor)
    yt = torch.from_numpy(Y).type(torch.LongTensor)
    epochs = 1000
    losses = []
    for i in range(epochs):
        loss = model.getloss(xt,yt)
        losses.append(loss.item())
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
    plot_losses(losses)
    print(accuracy_score(model.predict(xt),yt))
    plot_decision_boundary(lambda x: predict(model,x), xt.numpy(), yt.numpy())

数学建模及数据分析 || 4. 深度学习应用案例分享,数学建模与数据分析,数学建模,数据分析,深度学习

0.98

数学建模及数据分析 || 4. 深度学习应用案例分享,数学建模与数据分析,数学建模,数据分析,深度学习

2. 泰坦尼克号数据分类

2.1 数据的准备工作

计算模块和数据的准备

import os
import numpy as np
import pandas as pd
from scipy import stats

import torch
import torch.nn as nn
import torch.nn.functional as F


titanic_data = pd.read_csv("titanic3.csv")
print(titanic_data.columns )
print('\n',titanic_data.dtypes)

Index([‘pclass’, ‘survived’, ‘name’, ‘sex’, ‘age’, ‘sibsp’, ‘parch’, ‘ticket’,
‘fare’, ‘cabin’, ‘embarked’, ‘boat’, ‘body’, ‘home.dest’],
dtype=‘object’)
------------
pclass int64
survived int64
name object
sex object
age float64
sibsp int64
parch int64
ticket object
fare float64
cabin object
embarked object
boat object
body float64
home.dest object
dtype: object

对哑变量的处理

#用哑变量将指定字段转成one-hot
titanic_data = pd.concat([titanic_data,
                          pd.get_dummies(titanic_data['sex']),
                          pd.get_dummies(titanic_data['embarked'],prefix="embark"),
                          pd.get_dummies(titanic_data['pclass'],prefix="class")], axis=1)

print(titanic_data.columns )
print(titanic_data['sex'])
print(titanic_data['female'])

Index([‘pclass’, ‘survived’, ‘name’, ‘sex’, ‘age’, ‘sibsp’, ‘parch’, ‘ticket’,
‘fare’, ‘cabin’, ‘embarked’, ‘boat’, ‘body’, ‘home.dest’, ‘female’,
‘male’, ‘embark_C’, ‘embark_Q’, ‘embark_S’, ‘class_1’, ‘class_2’,
‘class_3’],
dtype=‘object’)
0 female
1 male
2 female
3 male
4 female

1304 female
1305 female
1306 male
1307 male
1308 male
Name: sex, Length: 1309, dtype: object
0 1
1 0
2 1
3 0
4 1

1304 1
1305 1
1306 0
1307 0
1308 0
Name: female, Length: 1309, dtype: uint8

对缺失值的处理

#处理None值
titanic_data["age"] = titanic_data["age"].fillna(titanic_data["age"].mean())
titanic_data["fare"] = titanic_data["fare"].fillna(titanic_data["fare"].mean())#乘客票价

#删去无用的列
titanic_data = titanic_data.drop(['name','ticket','cabin','boat','body','home.dest','sex','embarked','pclass'], axis=1)
print(titanic_data.columns)

Index([‘survived’, ‘age’, ‘sibsp’, ‘parch’, ‘fare’, ‘female’, ‘male’,
‘embark_C’, ‘embark_Q’, ‘embark_S’, ‘class_1’, ‘class_2’, ‘class_3’],
dtype=‘object’)

划分训练集和测试集

#分离样本和标签
labels = titanic_data["survived"].to_numpy()

titanic_data = titanic_data.drop(['survived'], axis=1)
data = titanic_data.to_numpy()

#样本的属性名称
feature_names = list(titanic_data.columns)


#将样本分为训练和测试两部分
np.random.seed(10)#设置种子,保证每次运行所分的样本一致
train_indices = np.random.choice(len(labels), int(0.7*len(labels)), replace=False)
test_indices = list(set(range(len(labels))) - set(train_indices))
train_features = data[train_indices]
train_labels = labels[train_indices]
test_features = data[test_indices]
test_labels = labels[test_indices]
len(test_labels)#393

2.2 全连接网络的搭建

搭建全连接网络

torch.manual_seed(0)  #设置随机种子

class ThreelinearModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.linear1 = nn.Linear(12, 12)
        self.mish1 = Mish()
        self.linear2 = nn.Linear(12, 8)
        self.mish2 = Mish()
        self.linear3 = nn.Linear(8, 2)
        self.softmax = nn.Softmax(dim=1)
        self.criterion = nn.CrossEntropyLoss() #定义交叉熵函数

    def forward(self, x): #定义一个全连接网络
        lin1_out = self.linear1(x)
        out1 = self.mish1(lin1_out)
        out2 = self.mish2(self.linear2(out1))

        return self.softmax(self.linear3(out2))
    

    def getloss(self,x,y): #实现LogicNet类的损失值计算接口
        y_pred = self.forward(x)
        loss = self.criterion(y_pred,y)#计算损失值得交叉熵
        return loss

class Mish(nn.Module):#Mish激活函数
    def __init__(self):
        super().__init__()
        print("Mish activation loaded...")
    def forward(self,x):
        x = x * (torch.tanh(F.softplus(x)))
        return x

net = ThreelinearModel()
optimizer = torch.optim.Adam(net.parameters(), lr=0.04)

训练网络

num_epochs = 200

input_tensor = torch.from_numpy(train_features).type(torch.FloatTensor)
label_tensor = torch.from_numpy(train_labels)

losses = []#定义列表,用于接收每一步的损失值
for epoch in range(num_epochs): 
    loss = net.getloss(input_tensor,label_tensor)
    losses.append(loss.item())
    optimizer.zero_grad()#清空之前的梯度
    loss.backward()#反向传播损失值
    optimizer.step()#更新参数
    if epoch % 20 == 0:
        print ('Epoch {}/{} => Loss: {:.2f}'.format(epoch+1, num_epochs, loss.item()))

#os.makedirs('models', exist_ok=True)
#torch.save(net.state_dict(), 'models/titanic_model.pt')  

Epoch 1/200 => Loss: 0.72
Epoch 21/200 => Loss: 0.55
Epoch 41/200 => Loss: 0.52
Epoch 61/200 => Loss: 0.49
Epoch 81/200 => Loss: 0.49
Epoch 101/200 => Loss: 0.48
Epoch 121/200 => Loss: 0.48
Epoch 141/200 => Loss: 0.48
Epoch 161/200 => Loss: 0.48
Epoch 181/200 => Loss: 0.48

2.3 结果的可视化

可视化函数

import matplotlib.pyplot as plt

def moving_average(a, w=10):#定义函数计算移动平均损失值
    if len(a) < w:
        return a[:]
    return [val if idx < w else sum(a[(idx-w):idx])/w for idx, val in enumerate(a)]

def plot_losses(losses):
    avgloss= moving_average(losses) #获得损失值的移动平均值
    plt.figure(1)
    plt.subplot(211)
    plt.plot(range(len(avgloss)), avgloss, 'b--')
    plt.xlabel('step number')
    plt.ylabel('Training loss')
    plt.title('step number vs. Training loss')
    plt.show()

调用可视化函数作图

plot_losses(losses)

#输出训练结果
out_probs = net(input_tensor).detach().numpy()
out_classes = np.argmax(out_probs, axis=1)
print("Train Accuracy:", sum(out_classes == train_labels) / len(train_labels))

#测试模型
test_input_tensor = torch.from_numpy(test_features).type(torch.FloatTensor)
out_probs = net(test_input_tensor).detach().numpy()
out_classes = np.argmax(out_probs, axis=1)
print("Test Accuracy:", sum(out_classes == test_labels) / len(test_labels))

数学建模及数据分析 || 4. 深度学习应用案例分享,数学建模与数据分析,数学建模,数据分析,深度学习

Train Accuracy: 0.8384279475982532
Test Accuracy: 0.806615776081425文章来源地址https://www.toymoban.com/news/detail-663513.html

到了这里,关于数学建模及数据分析 || 4. 深度学习应用案例分享的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模常用模型(十) :数据包络(DEA)分析法

    数据包络分析(DEA)是一种用于评估决策单元(Decision Making Unit,DMU)效率的方法。在DEA中,每个DMU都是一个有多个输入和输出指标的单位,而DEA的目标是找到一个最优的权重组合,使得每个DMU在其输入和输出指标上都能达到最大值,即达到最高的效率。 这是我自己总结的一

    2024年02月05日
    浏览(28)
  • 国际旅游网络的大数据分析(数学建模练习题)

    伴随着大数据时代的到来,数据分析已经深入到现代社会生活中的各个方面。 无论是国家政府部门、企事业单位还是个人,数据分析工作都是进行决策之前的 重要环节。 山东省应用统计学会是在省民政厅注册的学术类社会组织,于 1989 年成立。 学会是全省目前从事统计调查

    2024年02月11日
    浏览(42)
  • 数据分析课程设计(数学建模+数据分析+数据可视化)——利用Python开发语言实现以及常见数据分析库的使用

    目录 数据分析报告——基于贫困生餐厅消费信息的分类与预测 一、数据分析背景以及目标 二、分析方法与过程 数据探索性与预处理 合并文件并检查缺失值 2.计算文件的当中的值 消费指数的描述性分析 首先对数据进行标准化处理 聚类模型的评价 聚类模型的结果关联 利用决

    2024年02月12日
    浏览(42)
  • 2023国赛数学建模E题思路代码 - 黄河水沙监测数据分析

    # 1 赛题 E 题 黄河水沙监测数据分析 黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变 化和人民生活的影响, 以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾 等方面都具有重要的理论指导意义。 附件 1 给出了位于

    2024年02月08日
    浏览(31)
  • 2023国赛数学建模E题思路代码 黄河水沙监测数据分析

    E题最大的难度是数据处理,可以做一个假设,假设一定时间内流量跟含沙量不变,那么我们可以对数据进行向下填充,把所有的数据进行合并之后可以对其进行展开特性分析,在研究调水调沙的实际效果时,可以先通过分析水沙通量计算实际效果,然后分析水沙通量与河底高

    2024年02月09日
    浏览(30)
  • 2023数学建模国赛E题黄河水沙监测数据分析完整代码分析+处理结果+思路文档

    已经写出国赛E题黄河水沙监测数据分析完整代码分析+处理结果+思路分析(30+页),包括数据预处理、数据可视化(分组数据分布图可视化、相关系数热力图可视化、散点图可视化)、回归模型(决策树回归模型、随机森林回归、GBDT回归、支持向量机回归、全连接神经网络)

    2024年02月09日
    浏览(34)
  • 2023高教社杯数学建模E题思路代码 - 黄河水沙监测数据分析

    # 1 赛题 E 题 黄河水沙监测数据分析 黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变 化和人民生活的影响, 以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾 等方面都具有重要的理论指导意义。 附件 1 给出了位于

    2024年02月09日
    浏览(30)
  • 2023高教社杯数学建模E题思路模型 - 黄河水沙监测数据分析

    # 1 赛题 E 题 黄河水沙监测数据分析 黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变 化和人民生活的影响, 以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾 等方面都具有重要的理论指导意义。 附件 1 给出了位于

    2024年02月09日
    浏览(22)
  • 2023高教社杯 国赛数学建模E题思路 - 黄河水沙监测数据分析

    E 题 黄河水沙监测数据分析 黄河是中华民族的母亲河。研究黄河水沙通量的变化规律对沿黄流域的环境治理、气候变 化和人民生活的影响, 以及对优化黄河流域水资源分配、协调人地关系、调水调沙、防洪减灾 等方面都具有重要的理论指导意义。 附件 1 给出了位于小浪底

    2024年02月09日
    浏览(28)
  • 大学生数学建模赛题解析及优秀论文-2021电工杯A题高铁牵引供电系统运行数据分析及等值建模(附Python代码)

    我国是世界上电气化铁路运营里程最长、服役电力机车型号最多、运营最 繁忙的国家。截至 2020 年底,我国铁路年消耗电量约 800 亿千瓦时,约占三峡 年总发电量的 80% 。 图 1 为高速铁路牵引供电系统示意图,主要包括牵引变电所、牵引网和动车 组。牵引变电所将 220kV 三相

    2024年02月06日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包