本文是LLM系列的相关文章,针对《Shepherd: A Critic for Language Model Generation》的翻译。
摘要
随着大型语言模型的改进,人们对利用这些模型的能力来完善其自身输出的技术越来越感兴趣。在这项工作中,我们介绍了Shepherd,这是一个专门针对批评模型响应和建议改进的语言模型,它超越了未经编辑的模型的能力,可以识别各种错误并提供补救建议。我们方法的核心是一个高质量的反馈数据集,我们根据社区反馈和人类注释对其进行策划。尽管Shepherd很小(7B参数),但它的批评与包括ChatGPT在内的已建立模型的批评是等效的或首选的。使用GPT4进行评估,与竞争对手相比,Shepherd的平均胜率为53-87%。在人类评估中,Shepherd严格优于其他模型,平均而言与ChatGPT密切相关。
1 引言
2 数据收集
3 Shepherd模型
4 评估反馈
5 结果
6 相关工作
7 结论
我们引入了一个新的模型来批评大型语言模型的生成。通过在多个数据集和不同的评估设置上进行广泛的实验,我们证明了我们的模型可以有效地评判答案,达到与ChatGPT相当的性能。随着LLM在越来越多的现实应用中被采用,我们认为开发自动机制来检查模型生成是很重要的。我们的批判模型Shepherd可以非常有助于提高生成质量和减少幻觉。文章来源:https://www.toymoban.com/news/detail-664268.html
不足
在本文中,我们通过自动评估和人的评估来评估模型的批判能力。尽管我们努力尝试大量的数据示例,并尽我们最大的财力使用人工注释器,但很明显,该论文可以从进一步的增强中受益。这可以通过执行更细致的分析来实现,该分析使用了更多的注释器和更广泛的各种任务。文章来源地址https://www.toymoban.com/news/detail-664268.html
到了这里,关于Shepherd: A Critic for Language Model Generation的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!