服务异步通信-高级篇
消息队列在使用过程中,面临着很多实际问题需要思考:
4. 消息可靠性
消息从发送,到消费者接收,会经历多个过程:
其中的每一步都可能导致消息丢失,常见的丢失原因包括:
- 发送时丢失:
- 生产者发送的消息未送达exchange
- 消息到达exchange后未到达queue
- MQ宕机,queue将消息丢失
- consumer接收到消息后未消费就宕机
针对这些问题,RabbitMQ分别给出了解决方案:
- 生产者确认机制
- mq持久化
- 消费者确认机制
- 失败重试机制
通过案例来演示,首先,导入demo工程,项目结构如下:
4.1 生产者消息确认
RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。这种机制必须给每个消息指定一个唯一ID。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。
返回结果有两种方式:
- publisher-confirm,发送者确认
- 消息成功投递到交换机,返回ack
- 消息未投递到交换机,返回nack
- publisher-return,发送者回执
- 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因。
注意:确认机制发送消息时,需要给每个消息设置一个全局唯一id,以区分不同消息,避免ack冲突
4.1.1 修改配置
首先,修改publisher服务中的application.yml文件,添加下面的内容:
spring: rabbitmq: publisher-confirm-type: correlated #开启confirm回调并且使用异步回调 publisher-returns: true #开启return回调 同时结合mandatory的配置才能真正生效 template: mandatory: true #如果配置为true则执行return的回调 如果为false则直接丢弃失败的消息
说明:
publish-confirm-type
:开启publisher-confirm,这里支持两种类型:
simple
:同步等待confirm结果,直到超时correlated
:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallbackpublish-returns
:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallbacktemplate.mandatory
:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息
4.1.2 定义Return回调
每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:
修改publisher服务,添加一个:
package cn.yishooo.mq.config; import lombok.extern.slf4j.Slf4j; import org.springframework.amqp.rabbit.core.RabbitTemplate; import org.springframework.beans.BeansException; import org.springframework.context.ApplicationContext; import org.springframework.context.ApplicationContextAware; import org.springframework.context.annotation.Configuration; @Slf4j @Configuration public class CommonConfig implements ApplicationContextAware { @Override public void setApplicationContext(ApplicationContext applicationContext) throws BeansException { // 通过类型从IOC容器中获取RabbitTemplate对象 RabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class); // 设置ReturnCallback rabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> { // 投递失败,记录日志 log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}", replyCode, replyText, exchange, routingKey, message.toString()); // 如果有业务需要,可以重发消息 }); } }
4.1.3 定义ConfirmCallback
ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。
在publisher服务的cn.yishooo.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:
public void testSendMessage2SimpleQueue() throws InterruptedException { // 1.消息体 String message = "hello, spring amqp!"; // 2.全局唯一的消息ID,需要封装到CorrelationData中 CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString()); // 3.添加callback correlationData.getFuture().addCallback( result -> { if(result.isAck()){ // 3.1.ack,消息成功 log.debug("消息发送成功, ID:{}", correlationData.getId()); }else{ // 3.2.nack,消息失败 log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), result.getReason()); } }, ex -> log.error("消息发送异常, ID:{}, 原因{}",correlationData.getId(),ex.getMessage()) ); // 4.发送消息 rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData); // 休眠一会儿,等待ack回执 Thread.sleep(2000); }
4.2 消息持久化
生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失。
要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制。
- 交换机持久化
- 队列持久化
- 消息持久化
4.2.1 交换机持久化
RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。
SpringAMQP中可以通过代码指定交换机持久化:
@Bean public DirectExchange simpleExchange(){ // 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除 return new DirectExchange("simple.direct", true, false); }
事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的。
public DirectExchange directExchange(){ return new DirectExchange("yishooo.direct");//底层默认持久化 } public DirectExchange(String name) {//子类带1个参数构造器 super(name); } public AbstractExchange(String name) {//抽象类 this(name, true, false); }
可以在RabbitMQ控制台看到持久化的交换机都会带上
D
的标示:
4.2.2 队列持久化
RabbitMQ中队列默认是非持久化的,mq重启后就丢失。
SpringAMQP中可以通过代码指定交换机持久化:
@Bean public Queue simpleQueue(){ // 使用QueueBuilder构建队列,durable就是持久化的 return QueueBuilder.durable("simple.queue").build(); }
事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。
public Queue queue(){ return new Queue("simple");//底层默认持久化 } public Queue(String name) { this(name, true, false, false); } public Queue(String name, boolean durable, boolean exclusive, boolean autoDelete) { this(name, durable, exclusive, autoDelete, null); } public Queue(String name, boolean durable, boolean exclusive, boolean autoDelete, @Nullable Map<String, Object> arguments) { super(arguments); Assert.notNull(name, "'name' cannot be null"); this.name = name; this.actualName = StringUtils.hasText(name) ? name : (Base64UrlNamingStrategy.DEFAULT.generateName() + "_awaiting_declaration"); this.durable = durable; this.exclusive = exclusive; this.autoDelete = autoDelete; }
可以在RabbitMQ控制台看到持久化的队列都会带上
D
的标示:
4.2.3 消息持久化
利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:
- 1:非持久化
- 2:持久化
用java代码指定:
默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。
@Override public void convertAndSend(String exchange, String routingKey, final Object object, @Nullable CorrelationData correlationData) throws AmqpException { send(exchange, routingKey, convertMessageIfNecessary(object), correlationData); } protected Message convertMessageIfNecessary(final Object object) { if (object instanceof Message) { return (Message) object; } return getRequiredMessageConverter().toMessage(object, new MessageProperties()); } MessageProperties类中的默认参数: public static final MessageDeliveryMode DEFAULT_DELIVERY_MODE = MessageDeliveryMode.PERSISTENT;
4.3 消费者消息确认
RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除。
而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。
设想这样的场景:
- 1)RabbitMQ投递消息给消费者
- 2)消费者获取消息后,返回ACK给RabbitMQ
- 3)RabbitMQ删除消息
- 4)消费者宕机,消息尚未处理
这样,消息就丢失了。因此消费者返回ACK的时机非常重要。
而SpringAMQP则允许配置三种确认模式:
manual:手动ack,需要在业务代码结束后,调用api发送ack。
auto:自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack;抛出异常则返回nack
none:关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除
由此可知:
- none模式下,消息投递是不可靠的,可能丢失
- auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack
- manual:自己根据业务情况,判断什么时候该ack
一般,我们都是使用默认的auto即可。
4.3.1 演示none模式
修改consumer服务的application.yml文件,添加下面内容:
spring: rabbitmq: listener: simple: acknowledge-mode: none # 关闭ack
修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:
@RabbitListener(queues = "simple.queue") public void listenSimpleQueue(String msg) { log.info("消费者接收到simple.queue的消息:【{}】", msg); // 模拟异常 System.out.println(1 / 0); log.debug("消息处理完成!"); }
测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。
4.3.2 演示auto模式
再次把确认机制修改为auto:
spring: rabbitmq: listener: simple: acknowledge-mode: auto # 关闭ack
在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):
抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:
4.4 消费失败重试机制
当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力:
4.4.1 本地重试
我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。
修改consumer服务的application.yml文件,添加内容:
spring: rabbitmq: listener: simple: retry: enabled: true # 开启消费者失败重试 initial-interval: 1000 # 初识的失败等待时长为1秒 multiplier: 3 # 失败的等待时长倍数,下次等待时长 = multiplier * last-interval max-attempts: 3 # 最大重试次数 stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false
重启consumer服务,重复之前的测试。可以发现:
- 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
- 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了
结论:
- 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
- 重试达到最大次数后,Spring会返回ack,消息会被丢弃
4.4.2 失败策略
在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。
在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:
RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式
ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队
RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机
比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。
1)在consumer服务中定义处理失败消息的交换机和队列
@Bean public DirectExchange errorMessageExchange(){ return new DirectExchange("error.direct"); } @Bean public Queue errorQueue(){ return new Queue("error.queue", true); } @Bean public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){ return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error"); }
2)定义一个RepublishMessageRecoverer,关联队列和交换机
@Bean public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){ return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error"); }
完整代码:
package cn.yishooo.mq.config; import org.springframework.amqp.core.Binding; import org.springframework.amqp.core.BindingBuilder; import org.springframework.amqp.core.DirectExchange; import org.springframework.amqp.core.Queue; import org.springframework.amqp.rabbit.core.RabbitTemplate; import org.springframework.amqp.rabbit.retry.MessageRecoverer; import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer; import org.springframework.context.annotation.Bean; @Configuration public class ErrorMessageConfig { @Bean public DirectExchange errorMessageExchange(){ return new DirectExchange("error.direct"); } @Bean public Queue errorQueue(){ return new Queue("error.queue", true); } @Bean public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){ return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error"); } @Bean public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){ return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error"); } }
4.5 总结
如何确保RabbitMQ消息的可靠性?
- 开启生产者确认机制,确保生产者的消息能到达队列
- 开启持久化功能,确保消息未消费前在队列中不会丢失
- 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack
- 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理
5. 死信交换机
5.1 初识死信交换机
5.1.1 什么是死信交换机
什么是死信?
当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):
- 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false
- 消息是一个过期消息,超时无人消费
- 要投递的队列消息满了,无法投递
如果这个包含死信的队列配置了
dead-letter-exchange
属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)。如图,一个消息被消费者拒绝了,变成了死信:
因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:
如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:
另外,队列将死信投递给死信交换机时,必须知道两个信息:
- 死信交换机名称
- 死信交换机与死信队列绑定的RoutingKey
这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。
5.1.2 利用死信交换机接收死信(拓展)
在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。
我们可以给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。
我们在consumer服务中,定义一组死信交换机、死信队列:
// 声明普通的 simple.queue队列,并且为其指定死信交换机:dl.direct @Bean public Queue simpleQueue2(){ return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化 .deadLetterExchange("dl.direct") // 指定死信交换机 .build(); } // 声明死信交换机 dl.direct @Bean public DirectExchange dlExchange(){ return new DirectExchange("dl.direct", true, false); } // 声明存储死信的队列 dl.queue @Bean public Queue dlQueue(){ return new Queue("dl.queue", true); } // 将死信队列 与 死信交换机绑定 @Bean public Binding dlBinding(Queue dlQueue,DirectExchange dlExchange){ return BindingBuilder.bind(dlQueue).to(dlExchange).with("simple"); }
5.1.3 总结
什么样的消息会成为死信?
- 消息被消费者reject或者返回nack
- 消息超时未消费
- 队列满了
死信交换机的使用场景是什么?
- 如果队列绑定了死信交换机,死信会投递到死信交换机;
- 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。
5.2 TTL
一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:
- 消息所在的队列设置了超时时间
- 消息本身设置了超时时间
2.2.1.接收超时死信的死信交换机
在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:
@RabbitListener(bindings = @QueueBinding( value = @Queue(name = "dl.ttl.queue", durable = "true"), exchange = @Exchange(name = "dl.ttl.direct"), key = "ttl" )) public void listenDlQueue(String msg){ log.info("接收到 dl.ttl.queue的延迟消息:{}", msg); }
5.2.2 声明一个队列,并且指定TTL
要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:
@Bean public Queue ttlQueue(){ return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化 .ttl(10000) // 设置队列的超时时间,10秒 .deadLetterExchange("dl.ttl.direct") // 指定死信交换机 .build(); }
注意,这个队列设定了死信交换机为
dl.ttl.direct
声明交换机,将ttl与交换机绑定:
@Bean public DirectExchange ttlExchange(){ return new DirectExchange("ttl.direct"); } @Bean public Binding ttlBinding(){ return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl"); }
发送消息,但是不要指定TTL:
@Test public void testTTLQueue() { // 创建消息 String message = "hello, ttl queue"; // 消息ID,需要封装到CorrelationData中 CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString()); // 发送消息 rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData); // 记录日志 log.debug("发送消息成功"); }
发送消息的日志:
查看下接收消息的日志:
因为队列的TTL值是10000ms,也就是10秒。可以看到消息发送与接收之间的时差刚好是10秒。
5.2.3 发送消息时,设定TTL
在发送消息时,也可以指定TTL:
@Test public void testTTLMsg() { // 创建消息 Message message = MessageBuilder .withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8)) .setExpiration("5000") .build(); // 消息ID,需要封装到CorrelationData中 CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString()); // 发送消息 rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData); log.debug("发送消息成功"); }
查看发送消息日志:
接收消息日志:
这次,发送与接收的延迟只有5秒。说明当队列、消息都设置了TTL时,任意一个到期就会成为死信。
5.2.4 总结
消息超时的两种方式是?
- 给队列设置ttl属性,进入队列后超过ttl时间的消息变为死信
- 给消息设置ttl属性,队列接收到消息超过ttl时间后变为死信
如何实现发送一个消息20秒后消费者才收到消息?
- 给消息的目标队列指定死信交换机
- 将消费者监听的队列绑定到死信交换机
- 发送消息时给消息设置超时时间为20秒
5.3 延迟队列
利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue)模式。
延迟队列的使用场景包括:
- 延迟发送短信
- 用户下单,如果用户在15 分钟内未支付,则自动取消
- 预约工作会议,20分钟后自动通知所有参会人员
因为延迟队列的需求非常多,所以RabbitMQ的官方也推出了一个插件,原生支持延迟队列效果。
这个插件就是DelayExchange插件。参考RabbitMQ的插件列表页面:https://www.rabbitmq.com/community-plugins.html
使用方式可以参考官网地址
5.3.1 安装DelayExchange插件
可以去对应的GitHub页面下载3.8.9版本的插件,地址为https://github.com/rabbitmq/rabbitmq-delayed-message-exchange/releases/tag/3.8.9这个对应RabbitMQ的3.8.5以上版本。
上传插件
基于Docker安装,所以需要先查看RabbitMQ的插件目录对应的数据卷。之前设定的RabbitMQ的数据卷名称为
mq-plugins
,使用下面命令查看数据卷:docker volume inspect mq-plugins
可以得到下面结果:
将插件上传到这个目录即可:
安装插件
进入MQ容器内部来执行安装。容器名为
mq
,执行以下命令:docker exec -it mq bash
进入容器内部后,执行下面命令开启插件:
rabbitmq-plugins enable rabbitmq_delayed_message_exchange
结果如下:
5.3.2 DelayExchange原理
DelayExchange需要将一个交换机声明为delayed类型。当我们发送消息到delayExchange时,流程如下:
- 接收消息
- 判断消息是否具备x-delay属性
- 如果有x-delay属性,说明是延迟消息,持久化到硬盘,读取x-delay值,作为延迟时间
- 返回routing not found结果给消息发送者
- x-delay时间到期后,重新投递消息到指定队列
5.3.3 使用DelayExchange
插件的使用也非常简单:声明一个交换机,交换机的类型可以是任意类型,只需要设定delayed属性为true即可,然后声明队列与其绑定即可。
1)声明DelayExchange交换机
基于注解方式(推荐):
也可以基于@Bean的方式:
2)发送消息
发送消息时,一定要携带x-delay属性,指定延迟的时间:
5.3.4 总结
延迟队列插件的使用步骤包括哪些?
•声明一个交换机,添加delayed属性为true
•发送消息时,添加x-delay头,值为超时时间
6. 惰性队列
6.1 消息堆积问题
当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题。
解决消息堆积有两种思路:
- 增加更多消费者,提高消费速度。也就是我们之前说的work queue模式
- 扩大队列容积,提高堆积上限
要提升队列容积,把消息保存在内存中显然是不行的。
6.2 惰性队列
从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的概念,也就是惰性队列。惰性队列的特征如下:
- 接收到消息后直接存入磁盘而非内存
- 消费者要消费消息时才会从磁盘中读取并加载到内存
- 支持数百万条的消息存储
6.2.1 基于命令行设置lazy-queue
而要设置一个队列为惰性队列,只需要在声明队列时,指定x-queue-mode属性为lazy即可。可以通过命令行将一个运行中的队列修改为惰性队列:
rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues
命令解读:
rabbitmqctl
:RabbitMQ的命令行工具set_policy
:添加一个策略Lazy
:策略名称,可以自定义"^lazy-queue$"
:用正则表达式匹配队列的名字'{"queue-mode":"lazy"}'
:设置队列模式为lazy模式--apply-to queues
:策略的作用对象,是所有的队列
6.2.2 基于@Bean声明lazy-queue
6.2.3 基于@RabbitListener声明LazyQueue
6.3 总结
消息堆积问题的解决方案?
- 队列上绑定多个消费者,提高消费速度
- 使用惰性队列,可以再mq中保存更多消息
惰性队列的优点有哪些?
- 基于磁盘存储,消息上限高
- 没有间歇性的page-out,性能比较稳定
惰性队列的缺点有哪些?
- 基于磁盘存储,消息时效性会降低
- 性能受限于磁盘的IO
7 MQ集群
7.1 集群分类
RabbitMQ的是基于Erlang语言编写,而Erlang又是一个面向并发的语言,天然支持集群模式。RabbitMQ的集群有两种模式:
普通集群:是一种分布式集群,将队列分散到集群的各个节点,从而提高整个集群的并发能力。
镜像集群:是一种主从集群,普通集群的基础上,添加了主从备份功能,提高集群的数据可用性。
镜像集群虽然支持主从,但主从同步并不是强一致的,某些情况下可能有数据丢失的风险。因此在RabbitMQ的3.8版本以后,推出了新的功能:仲裁队列来代替镜像集群,底层采用Raft协议确保主从的数据一致性。
7.2 普通集群
7.2.1 集群结构和特征
普通集群,或者叫标准集群(classic cluster),具备下列特征:
- 会在集群的各个节点间共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
- 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回
- 队列所在节点宕机,队列中的消息就会丢失
结构如图:
两种集群的配置方式:
- 普通模式:普通模式集群不进行数据同步,每个MQ都有自己的队列、数据信息(其它元数据信息如交换机等会同步)。例如我们有2个MQ:mq1,和mq2,如果你的消息在mq1,而你连接到了mq2,那么mq2会去mq1拉取消息,然后返回给你。如果mq1宕机,消息就会丢失。
- 镜像模式:与普通模式不同,队列会在各个mq的镜像节点之间同步,因此你连接到任何一个镜像节点,均可获取到消息。而且如果一个节点宕机,并不会导致数据丢失。不过,这种方式增加了数据同步的带宽消耗。
先来看普通模式集群,计划部署3节点的mq集群:
主机名 控制台端口 amqp通信端口 mq1 8081 —> 15672 8071 —> 5672 mq2 8082 —> 15672 8072 —> 5672 mq3 8083 —> 15672 8073 —> 5672 集群中的节点标示默认都是:
rabbit@[hostname]
,因此以上三个节点的名称分别为:
- rabbit@mq1
- rabbit@mq2
- rabbit@mq3
7.2.2 获取cookie
RabbitMQ底层依赖于Erlang,而Erlang虚拟机就是一个面向分布式的语言,默认就支持集群模式。集群模式中的每个RabbitMQ 节点使用 cookie 来确定它们是否被允许相互通信。
要使两个节点能够通信,它们必须具有相同的共享秘密,称为Erlang cookie。cookie 只是一串最多 255 个字符的字母数字字符。
每个集群节点必须具有相同的 cookie。实例之间也需要它来相互通信。
我们先在之前启动的mq容器中获取一个cookie值,作为集群的cookie。执行下面的命令:
docker exec -it mq cat /var/lib/rabbitmq/.erlang.cookie
可以看到cookie值如下:
QCQKJLPKNAVSPQPZIZRD
接下来,停止并删除当前的mq容器,重新搭建集群。
docker rm -f mq
7.2.3 准备集群配置
在/tmp目录新建一个配置文件 rabbitmq.conf:
cd /tmp # 创建文件 touch rabbitmq.conf
文件内容如下:
loopback_users.guest = false listeners.tcp.default = 5672 cluster_formation.peer_discovery_backend = rabbit_peer_discovery_classic_config cluster_formation.classic_config.nodes.1 = rabbit@mq1 cluster_formation.classic_config.nodes.2 = rabbit@mq2 cluster_formation.classic_config.nodes.3 = rabbit@mq3
再创建一个文件,记录cookie
cd /tmp # 创建cookie文件 touch .erlang.cookie # 写入cookie echo "QCQKJLPKNAVSPQPZIZRD" > .erlang.cookie # 修改cookie文件的权限 chmod 600 .erlang.cookie
准备三个目录,mq1、mq2、mq3:
cd /tmp # 创建目录 mkdir mq1 mq2 mq3
然后拷贝rabbitmq.conf、cookie文件到mq1、mq2、mq3:
# 进入/tmp cd /tmp # 拷贝 cp rabbitmq.conf mq1 cp rabbitmq.conf mq2 cp rabbitmq.conf mq3 cp .erlang.cookie mq1 cp .erlang.cookie mq2 cp .erlang.cookie mq3
7.2.4 启动集群
创建一个网络:
docker network create mq-net
docker volume create
运行命令
docker run -d --net mq-net \ -v ${PWD}/mq1/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \ -v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \ -e RABBITMQ_DEFAULT_USER=yishooo \ -e RABBITMQ_DEFAULT_PASS=123456 \ --name mq1 \ --hostname mq1 \ -p 8071:5672 \ -p 8081:15672 \ rabbitmq:3.8-management
docker run -d --net mq-net \ -v ${PWD}/mq2/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \ -v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \ -e RABBITMQ_DEFAULT_USER=yishooo \ -e RABBITMQ_DEFAULT_PASS=123456 \ --name mq2 \ --hostname mq2 \ -p 8072:5672 \ -p 8082:15672 \ rabbitmq:3.8-management
docker run -d --net mq-net \ -v ${PWD}/mq3/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \ -v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \ -e RABBITMQ_DEFAULT_USER=yishooo \ -e RABBITMQ_DEFAULT_PASS=123456 \ --name mq3 \ --hostname mq3 \ -p 8073:5672 \ -p 8083:15672 \ rabbitmq:3.8-management
7.2.5 测试
在mq1这个节点上添加一个队列:
如图,在mq2和mq3两个控制台也都能看到:
7.2.5.1 数据共享测试
点击这个队列,进入管理页面:
然后利用控制台发送一条消息到这个队列:
结果在mq2、mq3上都能看到这条消息:
7.2.5.2 可用性测试
让其中一台节点mq1宕机:
docker stop mq1
然后登录mq2或mq3的控制台,发现simple.queue也不可用了:
说明数据并没有拷贝到mq2和mq3。
7.3 镜像集群
7.3.1 集群结构和特征
镜像集群:本质是主从模式,具备下面的特征:
- 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份。
- 创建队列的节点被称为该队列的主节点,备份到的其它节点叫做该队列的镜像节点。
- 一个队列的主节点可能是另一个队列的镜像节点
- 所有操作都是主节点完成,然后同步给镜像节点
- 主宕机后,镜像节点会替代成新的主
结构如图:
默认情况下,队列只保存在创建该队列的节点上。而镜像模式下,创建队列的节点被称为该队列的主节点,队列还会拷贝到集群中的其它节点,也叫做该队列的镜像节点。
但是,不同队列可以在集群中的任意节点上创建,因此不同队列的主节点可以不同。甚至,一个队列的主节点可能是另一个队列的镜像节点。
用户发送给队列的一切请求,例如发送消息、消息回执默认都会在主节点完成,如果是从节点接收到请求,也会路由到主节点去完成。镜像节点仅仅起到备份数据作用。
当主节点接收到消费者的ACK时,所有镜像都会删除节点中的数据。
总结如下:
- 镜像队列结构是一主多从(从就是镜像)
- 所有操作都是主节点完成,然后同步给镜像节点
- 主宕机后,镜像节点会替代成新的主(如果在主从同步完成前,主就已经宕机,可能出现数据丢失)
- 不具备负载均衡功能,因为所有操作都会有主节点完成(但是不同队列,其主节点可以不同,可以利用这个提高吞吐量)
7.3.2 镜像模式的配置
镜像模式的配置有3种模式:
ha-mode ha-params 效果 准确模式exactly 队列的副本量count 集群中队列副本(主服务器和镜像服务器之和)的数量。count如果为1意味着单个副本:即队列主节点。count值为2表示2个副本:1个队列主和1个队列镜像。换句话说:count = 镜像数量 + 1。如果群集中的节点数少于count,则该队列将镜像到所有节点。如果有集群总数大于count+1,并且包含镜像的节点出现故障,则将在另一个节点上创建一个新的镜像。 all (none) 队列在群集中的所有节点之间进行镜像。队列将镜像到任何新加入的节点。镜像到所有节点将对所有群集节点施加额外的压力,包括网络I / O,磁盘I / O和磁盘空间使用情况。推荐使用exactly,设置副本数为(N / 2 +1)。 nodes node names 指定队列创建到哪些节点,如果指定的节点全部不存在,则会出现异常。如果指定的节点在集群中存在,但是暂时不可用,会创建节点到当前客户端连接到的节点。 这里我们以rabbitmqctl命令作为案例来讲解配置语法。
语法示例:
进入mq1容器
docker exec -it mq1 bash
7.3.2.1 exactly模式
rabbitmqctl set_policy ha-two "^two\." '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'
rabbitmqctl set_policy
:固定写法ha-two
:策略名称,自定义"^two\."
:匹配队列的正则表达式,符合命名规则的队列才生效,这里是任何以two.
开头的队列名称'{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'
: 策略内容
"ha-mode":"exactly"
:策略模式,此处是exactly模式,指定副本数量"ha-params":2
:策略参数,这里是2,就是副本数量为2,1主1镜像"ha-sync-mode":"automatic"
:同步策略,默认是manual,即新加入的镜像节点不会同步旧的消息。如果设置为automatic,则新加入的镜像节点会把主节点中所有消息都同步,会带来额外的网络开销
7.3.2.2 all模式
rabbitmqctl set_policy ha-all "^all\." '{"ha-mode":"all"}'
ha-all
:策略名称,自定义"^all\."
:匹配所有以all.
开头的队列名'{"ha-mode":"all"}'
:策略内容
"ha-mode":"all"
:策略模式,此处是all模式,即所有节点都会称为镜像节点
7.3.2.3 nodes模式
rabbitmqctl set_policy ha-nodes "^nodes\." '{"ha-mode":"nodes","ha-params":["rabbit@mq3", "rabbit@mq1"]}'
rabbitmqctl set_policy
:固定写法ha-nodes
:策略名称,自定义"^nodes\."
:匹配队列的正则表达式,符合命名规则的队列才生效,这里是任何以nodes.
开头的队列名称'{"ha-mode":"nodes","ha-params":["rabbit@nodeA", "rabbit@nodeB"]}'
: 策略内容
"ha-mode":"nodes"
:策略模式,此处是nodes模式"ha-params":["rabbit@mq1", "rabbit@mq2"]
:策略参数,这里指定副本所在节点名称
7.3.3 测试
我们使用exactly模式的镜像,因为集群节点数量为3,因此镜像数量就设置为2.
运行下面的命令:
docker exec -it mq1 rabbitmqctl set_policy ha-two "^two\." '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'
下面,我们创建一个新的队列:
在任意一个mq控制台查看队列:
7.3.3.1 测试数据共享
给two.queue发送一条消息:
然后在mq1、mq2、mq3的任意控制台查看消息:
7.3.3.2 测试高可用
现在,我们让two.queue的主节点mq1宕机:
docker stop mq1
查看集群状态:
查看队列状态:
发现依然是健康的!并且其主节点切换到了rabbit@mq2上
7.4 仲裁队列
7.4.1 集群特征
仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:
- 与镜像队列一样,都是主从模式,支持主从数据同步
- 使用非常简单,没有复杂的配置
- 主从同步基于Raft协议,强一致
7.4.2 部署
从RabbitMQ 3.8版本开始,引入了新的仲裁队列,他具备与镜像队里类似的功能,但使用更加方便。
7.4.2.1 添加仲裁队列
在任意控制台添加一个队列,一定要选择队列类型为Quorum类型。
在任意控制台查看队列:
可以看到,仲裁队列的 + 2字样。代表这个队列有2个镜像节点。
因为仲裁队列默认的镜像数为5。如果你的集群有7个节点,那么镜像数肯定是5;而我们集群只有3个节点,因此镜像数量就是3.
7.4.2.2 测试
可以参考对镜像集群的测试,效果是一样的。
7.4.2.3 集群扩容
7.4.2.3.1 加入集群
1)启动一个新的MQ容器:
docker run -d --net mq-net \ -v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \ -e RABBITMQ_DEFAULT_USER=itcast \ -e RABBITMQ_DEFAULT_PASS=123321 \ --name mq4 \ --hostname mq5 \ -p 8074:15672 \ -p 8084:15672 \ rabbitmq:3.8-management
2)进入容器控制台:
docker exec -it mq4 bash
3)停止mq进程
rabbitmqctl stop_app
4)重置RabbitMQ中的数据:
rabbitmqctl reset
5)加入mq1:
rabbitmqctl join_cluster rabbit@mq1
6)再次启动mq进程
rabbitmqctl start_app
7.4.2.3.2 增加仲裁队列副本
先查看下quorum.queue这个队列目前的副本情况,进入mq1容器:
docker exec -it mq1 bash
执行命令:
rabbitmq-queues quorum_status "quorum.queue"
结果:
现在,让mq4也加入进来:
rabbitmq-queues add_member "quorum.queue" "rabbit@mq4"
结果:
再次查看:
rabbitmq-queues quorum_status "quorum.queue"
查看控制台,发现quorum.queue的镜像数量也从原来的 +2 变成了 +3:
文章来源:https://www.toymoban.com/news/detail-665230.html
7.4.4.3 Java代码创建仲裁队列
@Bean public Queue quorumQueue() { return QueueBuilder .durable("quorum.queue") // 持久化 .quorum() // 仲裁队列 .build(); }
7.4.4.4 SpringAMQP连接MQ集群
注意,这里用address来代替host、port方式文章来源地址https://www.toymoban.com/news/detail-665230.html
spring: rabbitmq: addresses: 192.168.150.105:8071, 192.168.150.105:8072, 192.168.150.105:8073 username: yishooo password: 123456 virtual-host: /
到了这里,关于【学习日记2023.6.19】 之 RabbitMQ服务异步通信_消息可靠性_死信交换机_惰性队列_MQ集群的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!