基于颜色进行轮廓分割,基于opencv和python

这篇具有很好参考价值的文章主要介绍了基于颜色进行轮廓分割,基于opencv和python。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 阈值调整,交互式的阈值调整,确定上限和下限:

import cv2 as cv
import numpy as np



def Tcallback(event):
    H = cv.getTrackbarPos('H', 'show_pic')
    S = cv.getTrackbarPos('S', 'show_pic')
    V = cv.getTrackbarPos('V', 'show_pic')
    H0 = cv.getTrackbarPos('H0', 'show_pic')
    S0 = cv.getTrackbarPos('S0', 'show_pic')
    V0 = cv.getTrackbarPos('V0', 'show_pic')
    lower_red = np.array([H0, S0, V0])
    upper_red = np.array([H, S, V])
    mask = cv.inRange(hsv, lower_red, upper_red)
    res = cv.bitwise_and(img, img, mask=mask)
    cv.imshow('show_pic', res)

img = cv.imread('sam2.png')#, 1)
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV_FULL)

cv.namedWindow('show_pic')
cv.resizeWindow('show_pic', 640, 480)

cv.createTrackbar('H', 'show_pic', 255, 255, Tcallback)
cv.createTrackbar('S', 'show_pic', 255, 255, Tcallback)
cv.createTrackbar('V', 'show_pic', 255, 255, Tcallback)  

cv.createTrackbar('H0', 'show_pic', 0, 255, Tcallback)
cv.createTrackbar('S0', 'show_pic', 43, 255, Tcallback)
cv.createTrackbar('V0', 'show_pic', 46, 255, Tcallback)

if cv.waitKey(0) == ord('q'):
    cv.destroyAllWindows()

2. 阈值分割,并找到最大轮廓

现根据mask找到所有轮廓

对所有轮廓排序,找到最大的

再对最大轮廓去凸多边形,用来对噪声做过滤。文章来源地址https://www.toymoban.com/news/detail-665264.html

img=cv2.resize(img,(640,480))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV_FULL)
mask_green=cv2.inRange(hsv, self.lower_green, self.upper_green)
img_c,contours, hierarchy = cv2.findContours(mask_green,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
list_c=sorted(contours,key=cv2.contourArea,reverse=True)
c_max=list_c[0]
approx = cv2.approxPolyDP(c_max, 0.01 * cv2.arcLength(c_max, True), True)
hull = cv2.convexHull(c_max)

到了这里,关于基于颜色进行轮廓分割,基于opencv和python的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于计算机视觉,深度学习、机器学习,OpenCV,图像分割,目标检测卷积神经网络计算机毕业设计选题题目大全选题指导

    随着深度学习、机器学习和神经网络技术的快速发展,计算机视觉领域的应用变得越来越广泛和有趣。本毕业设计旨在探索这一领域的前沿技术,将深度学习模型、神经网络架构、OpenCV图像处理工具,以及卷积神经网络(CNN)的强大能力结合起来,以解决实际图像处理问题。

    2024年02月08日
    浏览(79)
  • 实战指南:使用OpenCV 4.0+Python进行机器学习与计算机视觉

    💂 个人网站:【办公神器】【游戏大全】【神级源码资源网】 🤟 前端学习课程:👉【28个案例趣学前端】【400个JS面试题】 💅 寻找学习交流、摸鱼划水的小伙伴,请点击【摸鱼学习交流群】 计算机视觉和机器学习的融合为我们带来了前所未有的机会和挑战。从智能助手到

    2024年02月13日
    浏览(54)
  • 【OpenCV+OCR】计算机视觉:识别图像验证码中指定颜色文字

    【作者主页】: 吴秋霖 【作者介绍】:Python领域优质创作者、阿里云博客专家、华为云享专家。长期致力于Python与爬虫领域研究与开发工作! 【作者推荐】:对JS逆向感兴趣的朋友可以关注《爬虫JS逆向实战》,对分布式爬虫平台感兴趣的朋友可以关注《分布式爬虫平台搭建

    2024年02月05日
    浏览(53)
  • 基于深度学习的人脸专注度检测计算系统 - opencv python cnn 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的人脸专注度检测计算算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.co

    2024年02月07日
    浏览(213)
  • 计算机竞赛 基于深度学习的人脸专注度检测计算系统 - opencv python cnn

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的人脸专注度检测计算算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.co

    2024年02月10日
    浏览(150)
  • 计算机毕设 基于深度学习的人脸专注度检测计算系统 - opencv python cnn

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月11日
    浏览(79)
  • python基于OpenCV预测图片中目标的实际尺寸(计算机视觉)

    本次实验需要根据已知的硬币的直径,预测图片中书本的长与宽以及书本右上方用铅笔画的圆圈的外圆直径。可以先对图片进行矫正,找到硬币的轮廓并计算硬币直径占据的像素大小,进而得到实际尺寸和像素的比例系数,然后找到书本和铅笔绘制的圆圈的轮廓,再根据它们

    2024年02月03日
    浏览(56)
  • 计算机竞赛 基于深度学习的植物识别算法 - cnn opencv python

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习的植物识别算法 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng

    2024年02月09日
    浏览(68)
  • 计算机毕设 基于深度学习的植物识别算法 - cnn opencv python

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月11日
    浏览(60)
  • 计算机竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python

    🔥 优质竞赛项目系列,今天要分享的是 基于机器视觉opencv的手势检测 手势识别 算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 普通机器视觉手势检测的基本流程如下: 其中轮廓的提取,多边形

    2024年02月07日
    浏览(81)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包