opencv 进阶13-Fisherfaces 人脸识别-函数cv2.face.FisherFaceRecognizer_create()

这篇具有很好参考价值的文章主要介绍了opencv 进阶13-Fisherfaces 人脸识别-函数cv2.face.FisherFaceRecognizer_create()。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Fisherfaces 人脸识别

PCA 方法是 EigenFaces 方法的核心,它找到了最大化数据总方差特征的线性组合。不可否认,EigenFaces
是一种非常有效的方法,但是它的缺点在于在操作过程中会损失许多特征信息。

因此,在一些情况下,如果损失的信息正好是用于分类的关键信息,必然会导致无法完成分类。Fisherfaces 采用 LDA(Linear Discriminant Analysis,线性判别分析)实现人脸识别。线性判别识别最早由 Fisher 在 1936 年提出,是一种经典的线性学习方法,也被称为“Fisher 判别分析法”。

基本原理

线性判别分析在对特征降维的同时考虑类别信息。其思路是:在低维表示下,相同的类应该紧密地聚集在一起;不同的类别应该尽可能地分散开,并且它们之间的距离尽可能地远。简单地说,线性判别分析就是要尽力满足以下两个要求:

  • 类别间的差别尽可能地大。
  • 类别内的差别尽可能地小。

做线性判别分析时,首先将训练样本集投影到一条直线 A 上,让投影后的点满足:

  • 同类间的点尽可能地靠近。
  • 异类间的点尽可能地远离。

做完投影后,将待测样本投影到直线 A 上,根据投影点的位置判定样本的类别,就完成了识别。

例如,图 23-13 所示的是一组训练样本集。现在需要找到一条直线,让所有的训练样本满足:同类间的距离最近,异类间的距离最远。

opencv 进阶13-Fisherfaces 人脸识别-函数cv2.face.FisherFaceRecognizer_create(),opencv 进阶,计算机视觉,人工智能,opencv,人工智能,计算机视觉

图 23-14 的左图和右图中分别有两条不同的投影线 L1 和 L2,将图 23-13 中的样本分别投影到这两条线上,可以看到样本集在 L2 上的投影效果要好于在 L1 上的投影效果。

opencv 进阶13-Fisherfaces 人脸识别-函数cv2.face.FisherFaceRecognizer_create(),opencv 进阶,计算机视觉,人工智能,opencv,人工智能,计算机视觉
线性判别分析就是要找到一条最优的投影线。以图 23-14 中右图投影为例,要满足:

  • A、B 组内的点之间尽可能地靠近
  • C 的两个端点之间的距离(类间距离)尽可能地远

找到一条这样的直线后,如果要判断某个待测样本的分组,可以直接将该样本点向投影线投影,然后根据投影点的位置来判断其所属类别。

例如,在图 23-15 中,三角形样本点 U 向投影线投影后,其投影点落在圆点的投影范围内,则认为待测样本点 U 属于圆点所在的分类。

opencv 进阶13-Fisherfaces 人脸识别-函数cv2.face.FisherFaceRecognizer_create(),opencv 进阶,计算机视觉,人工智能,opencv,人工智能,计算机视觉

函数介绍

OpenCV 中,通过函数 cv2.face.FisherFaceRecognizer_create()生成 Fisherfaces 识别器实例模型,然后应用 cv2.face_FaceRecognizer.train()函数完成训练,用 cv2.face_FaceRecognizer.predict()函数完成人脸识别。

  1. 函数cv2.face.FisherFaceRecognizer_create()
    函数 cv2.face.FisherFaceRecognizer_create()的语法格式为:

retval = cv2.face.FisherFaceRecognizer_create( [, num_components[,
threshold]] )

式中的两个参数都是可选参数,它们的含义为:

  • num_components:使用 Fisherfaces 准则进行线性判别分析时保留的成分数量。可以采用默认值“0”,让函数自动设置合适的成分数量。
  • threshold:进行识别时所用的阈值。如果最近的距离比设定的阈值 threshold 还要大,函数会返回“-1”。
  1. 函数cv2.face_FaceRecognizer.train()

函数 cv2.face_FaceRecognizer.train()对每个参考图像进行 Fisherfaces 计算,得到一个向量。
每个人脸都是整个向量集中的一个点。该函数的语法格式为:

None = cv2.face_FaceRecognizer.train( src, labels )

式中各个参数的含义为:

  • src:训练图像,即用来学习的人脸图像。
  • labels:人脸图像所对应的标签。
    该函数没有返回值。
  1. 函数cv2.face_FaceRecognizer.predict()
    函数 cv2.face_FaceRecognizer.predict()在对一个待测人脸图像进行判断时,寻找与其距离最近的人脸图像。与哪个人脸图像最接近,就将待测图像识别为其对应的标签。该函数的语法格式为:

label, confidence = cv2.face_FaceRecognizer.predict( src )

式中的参数与返回值的含义为:

  • src:需要识别的人脸图像。
  • label:返回的识别结果的标签。
  • confidence:置信度评分。置信度评分用来衡量识别结果与原有模型之间的距离。0 表示完全匹配该值通常在 0 到 20 000 之间,若低于 5000,就认为是相当可靠的识别结果。需要注意,该评分值的范围与 EigenFaces 方法的评分值范围一致,与 LBPH 方法的评分值范围不一致。

示例:使用 FisherFaces 完成一个简单的人脸识别程序


import cv2
import numpy as np
images=[]
img1= cv2.imread("face\\face2.png",cv2.IMREAD_GRAYSCALE);
img1.resize((240,240))
images.append(img1)

img2= cv2.imread("face\\face3.png",cv2.IMREAD_GRAYSCALE);
img2.resize((240,240))
images.append(img2)

img3= cv2.imread("face\\face4.png",cv2.IMREAD_GRAYSCALE);
img3.resize((240,240))
images.append(img3)

img4= cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE);
img4.resize((240,240))
images.append(img4)

labels=[0,0,1,1]
#print(labels)
recognizer = cv2.face.FisherFaceRecognizer_create()
recognizer.train(images, np.array(labels)) # 识别器训练
predict_image=cv2.imread("face\\face6.png",cv2.IMREAD_GRAYSCALE)
predict_image.resize((240,240))
label,confidence= recognizer.predict(predict_image)
print("label=",label)
print("confidence=",confidence)

运行结果:

label= 0
confidence= 1034.0276952694567

从结果中可以看出,他的准确度又比EigenFaces 人脸识别对比的化准确多了。

常见的OpenCV人脸算法以及它们的对比

Haar Cascade人脸检测(查找):
Haar Cascade是一种传统的人脸检测算法,它基于特征的级联分类器。尽管速度较快,但对于一些角度、光照和遮挡变化较大的情况,可能表现不够稳定和准确。

Dlib人脸检测和识别:
Dlib库提供了基于HOG特征的人脸检测和深度学习的人脸识别。Dlib在不同角度和轻微遮挡下有良好的检测性能。它还可以进行人脸特征点检测,如眼睛、嘴巴等。

深度学习模型:(后续讲解)
OpenCV也集成了一些深度学习模型用于人脸检测和识别,如基于CNN的人脸检测器和基于深度学习的人脸识别算法。这些模型通常在大规模数据集上进行了训练,具有更高的准确性,但可能需要更多的计算资源。

LBPH人脸识别:(应用少)
局部二值模式直方图(LBPH)是一种基于纹理的人脸识别算法,适用于小规模数据库。它不需要大量的训练数据,但在复杂场景下可能性能较差。

Eigenfaces和Fisherfaces:
Eigenfaces和Fisherfaces是基于PCA和LDA的经典人脸识别算法。它们在某些情况下可能表现出色,但在复杂环境中可能不如深度学习模型。

在选择OpenCV人脸算法时,需要考虑以下因素:

准确性: 算法的准确性是否满足你的应用需求?
速度: 算法的执行速度是否足够快?
复杂度: 算法的实现和使用是否容易?
数据规模: 你的数据集是大还是小?
场景: 你的应用场景中是否有遮挡、光照变化等因素?

一般来说,对于复杂的人脸检测和识别问题,深度学习模型可能会更加准确,但也需要更多的计算资源。对于一些简单的应用,传统的方法如Haar Cascade或Dlib可能已经足够。选择适合自己应用的算法需要根据具体情况进行权衡和评估。文章来源地址https://www.toymoban.com/news/detail-665270.html

到了这里,关于opencv 进阶13-Fisherfaces 人脸识别-函数cv2.face.FisherFaceRecognizer_create()的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • opencv进阶14-Harris角点检测-cv2.cornerHarris

    类似于人的眼睛和大脑,OpenCV可以检测图像的主要特征并将这 些特征提取到所谓的图像描述符中。然后,可以将这些特征作为数据 库,支持基于图像的搜索。此外,我们可以使用关键点将图像拼接起 来,组成更大的图像。(想象一下把很多图片放到一起组成一幅360°的全景

    2024年02月11日
    浏览(77)
  • Opencv cv2.putText 函数详解

    具体函数如下: 函数源码如下: 对应的参数如下: 参数 具体表述 image 绘制的图像 text 绘制的文本 org 文本在图像中显示的坐标,用元组表示格式为(X坐标,Y坐标) font 文本字体类型,值可以为 FONT_HERSHEY_SIMPLEX 、 FONT_HERSHEY_PLAIN fontScale 字体比例因子乘以font-specific基本大小 c

    2024年02月09日
    浏览(68)
  • 【OpenCV常用函数:颜色空间转换、阈值化】cv2.cvtColor()+cv2.threshold()

    对图像进行颜色空间的转换 对图像进行阈值化/二值化

    2024年02月13日
    浏览(61)
  • 【OpenCV常用函数:视频捕获函数】cv2.VideoCapture

    输入视频路径,创建VideoCapture的对象 该类的函数有: 1)video.isOpened: 检查视频捕获是否成功 2)video.read(): 读取视频帧,返回ret, frame,ret为bool类型,表示是否成功 3)video.release(): 关闭视频 4)video.get(prop): 获取video的属性 如果要读取视频的每一帧,然后进行相关的处理时,可

    2024年02月13日
    浏览(64)
  • opencv进阶01-直方图的应用及示例cv2.calcHist()

    直方图是一种图形表示方法,用于显示数据中各个数值或数值范围的分布情况。它将数据划分为一系列的区间(也称为“箱子”或“bin”),然后统计每个区间中数据出现的频次(或频率)。直方图可以帮助我们更好地理解数据的分布特征,包括集中趋势、离散程度等。 直方

    2024年02月13日
    浏览(45)
  • 【OpenCV常用函数:轮廓检测+外接矩形检测】cv2.findContours()+cv2.boundingRect()

    对具有黑色背景的二值图像寻找白色区域的轮廓,因此一般都会先经过cvtColor()灰度化和threshold()二值化后的图像作为输入。 例如,如下的轮廓检测出的结果contours和hierarchy。 根据轮廓点检测对应轮廓的外接矩形

    2024年02月13日
    浏览(53)
  • OpenCV腐蚀函数:cv2.erode()使用

    void cv::erode ( InputArray src , OutputArray dst , InputArray kernel , Point anchor  =  Point(-1,-1) , int  iterations  =  1 , int  borderType  =  BORDER_CONSTANT , const Scalar   borderValue  =  morphologyDefaultBorderValue()   ) Python: dst = cv.erode( src, kernel[, dst[, anchor[, iterations[, borderType[, borderValue]]]]] ) 通过使用特定

    2024年02月14日
    浏览(46)
  • opencv进阶08-K 均值聚类cv2.kmeans()介绍及示例

    K均值聚类是一种常用的无监督学习算法,用于将一组数据点分成不同的簇(clusters),以便数据点在同一簇内更相似,而不同簇之间差异较大。K均值聚类的目标是通过最小化数据点与所属簇中心之间的距离来形成簇。 当我们要预测的是一个离散值时,做的工作就是“分类”

    2024年02月12日
    浏览(47)
  • 深入解析OpenCV中的cv2.waitKey()函数

    OpenCV 是一个开源计算机视觉库,广泛用于图像处理和计算机视觉任务。在图像处理中,有时候我们需要在图像显示时等待用户的交互,例如等待用户按下一个键来关闭图像窗口或执行其他操作。这时就可以使用 waitKey() 函数。 waitKey() 函数通常与OpenCV的图像显示功能一起使用

    2024年02月04日
    浏览(47)
  • opencv进阶09-视频处理cv2.VideoCapture示例(打开本机电脑摄像头)

    视频信号(以下简称为视频)是非常重要的视觉信息来源,它是视觉处理过程中经常要处理的一类信号。实际上,视频是由一系列图像构成的,这一系列图像被称为帧,帧是以固定的时间间隔从视频中获取的。获取(播放)帧的速度称为帧速率,其单位通常使用“帧/秒”表示

    2024年02月12日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包