R语言处理缺失数据(1)-mice

这篇具有很好参考价值的文章主要介绍了R语言处理缺失数据(1)-mice。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

#清空
rm(list=ls())
gc()

###生成模拟数据###
#生成100个随机数
library(magrittr)
set.seed(1)
asd<-rnorm(100, mean = 60, sd = 10) %>% round #平均60,标准差10
#将10个数随机替换为NA
NA_positions <- sample(1:100, 10)
asd[NA_positions] <- NA
#转化为data.frame
asd <-asd %>% data.frame
colnames(asd)<-"Age"
set.seed(1)
#添加其他相关数据
asd$Weight<-rnorm(100, mean = 75, sd = 5) %>% round
asd$BMI<-rnorm(100,mean=19,sd=4)
asd$Sex<-sample(0:1,100,replace=T) %>% as.factor
asd$death<-sample(0:1,100,replace=T) %>% as.factor
#查看数据分布
str(asd)
library(ggplot2)
ggplot(asd,aes(Age))+#数据集、坐标轴
  geom_histogram(color = "#000000", fill = "#0099F8")+#设置直方图线条颜色为黑色,设置直方图填充颜色为蓝色。
  ggtitle("数据分布") +#设置坐标轴名称
  theme_classic() +#将主题设置为经典风格
  theme(plot.title = element_text(size = 18))#将文本字号设置为18


###缺失情况观察###
library(VIM) 
aggr(asd,prop=T, numbers=F, sortVars=T)
library(mice)
md.pattern(asd)

###使用 MICE 包进行多重插补缺失值###
library(mice)
help(package="mice")
imp_asd<-mice(asd,method="rf",m=10,seed=123)#m代表插补几次
stripplot(imp_asd, cex=1, alpha=1)#可视化插补情况,蓝色是原始数据,红色是插补数据
densityplot(imp_asd)
result<-complete(imp_asd)

###拟合模型###
fit<-with(imp_asd,glm(death~Age+Weight+BMI+Sex,family = binomial))#生成10个回归模型
fit_combine<-pool(fit)#合并10个模型
summary(fit_combine)#总结

R语言处理缺失数据(1)-mice,常用方法,r语言

R语言处理缺失数据(1)-mice,常用方法,r语言

 R语言处理缺失数据(1)-mice,常用方法,r语言

 R语言处理缺失数据(1)-mice,常用方法,r语言

 R语言处理缺失数据(1)-mice,常用方法,r语言

R语言处理缺失数据(1)-mice,常用方法,r语言

 备注:mice包支持的方法:

R语言处理缺失数据(1)-mice,常用方法,r语言

 文章来源地址https://www.toymoban.com/news/detail-665298.html

到了这里,关于R语言处理缺失数据(1)-mice的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数据操作——缺失值处理

    缺失值的处理思路 如果想探究如何处理无效值, 首先要知道无效值从哪来, 从而分析可能产生的无效值有哪些类型, 在分别去看如何处理无效值 什么是缺失值 一个值本身的含义是这个值不存在则称之为缺失值, 也就是说这个值本身代表着缺失, 或者这个值本身无意义, 比如说

    2024年01月22日
    浏览(48)
  • 【数据分析】缺失值处理

    1. 均值填充: 对于 数值型 的特征,采用该特征在已有数据中的 平均值或中位数 来填充缺失值。 2. 众数填充: 对于 类别型 的特征,采用该特征在已有数据中 出现频率最高的类别 来填充缺失值。 3. 插值法: 通过已有的数据,推算出缺失值,常用的插值方法包括线性插值、

    2024年02月11日
    浏览(43)
  • pandas数据清洗——缺失值处理

    使用DataFrame对象的info()方法 原始数据 ​​ 注:NaN为空缺值   查看是否有缺失值    Non-Null Count列显示的是每个索引中不是空缺的个数 使用DataFrame的isnull()方法和notnull()方法 1. isnull()方法——判断是否为空,输出结果为True和False,不为NaN时返回False,为NaN时返回True。     2.

    2024年02月12日
    浏览(55)
  • 【机器学习】数据清洗之处理缺失点

    🎈个人主页:甜美的江 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:机器学习 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 引言: 在机器学习领域,数据被广泛认为是驱动模型性能的关键。然而,在真实世界的数据中,缺

    2024年02月20日
    浏览(43)
  • 【数据挖掘 | 数据预处理】缺失值处理 & 重复值处理 & 文本处理 确定不来看看?

    🤵‍♂️ 个人主页: @AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍 🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能硬件(虽然硬件还没开始玩,但一直

    2024年02月07日
    浏览(72)
  • 缺失数据(missing data)的处理(理论)

    expectation maximization 期望最大化 maximum likelihood 最大似然 case substitution prior knowledge 先验知识 图片来源:https://github.com/dataprofessor/infographic 对原始数据进行缺失值检查。 若无缺失数据,则继续进行其他数据预处理步骤,进而进行机器学习模型的建立。 若有缺失数据,按照数据

    2024年02月06日
    浏览(39)
  • F#奇妙游(31):数据缺失的处理

    在处理数据时,缺失数据和无效数据是一个常见的问题。在Python中,通常使用None来表示缺失数据。 在F#中,我们可以使用FSharpOption来表示缺失数据。FSharpOption是一个泛型类型,它有两个值:Some和None。Some表示一个值,而None表示一个缺失的值。FSharpOption的定义如下: 从ADT的组

    2024年02月09日
    浏览(32)
  • SparkSQL-对数据缺失和异常值进行处理

    缺失数据 准备数据  处理方式 丢弃规则 填充规则 异常数据  方法1:丢弃处理  方法2:替换处理 准备数据  处理方式 1、丢弃/过滤:DataFrame.na.drop() 2、填充:DataFrame.na.fill() 3、替换:DataFrame.na.replace() 丢弃规则 1、any 一行中有任何一个是NaN/null就丢弃 2、all 只有一行中所有

    2024年02月05日
    浏览(59)
  • python 房价数据可视化以数据缺失处理、及回归算法

    房价数据为他国地区 使用工具为JupyterLab、python3 用到的包 绘图包:seaborn、matplotlib 数据处理包:numpy、pandas 统计计算包:math、scipy 回归模型包:make_pipeline、 RobustScaler、ElasticNet,Lasso、KernelRidge、GradientBoostingRegresso、xgboost 导入并打印数据 打印特征值、索引列 打印房价相关的

    2024年02月09日
    浏览(42)
  • Pandas实战100例 | 案例 3: 数据清洗 - 处理缺失值

    案例 3: 数据清洗 - 处理缺失值 知识点讲解 在现实世界的数据集中,经常会遇到缺失值。Pandas 提供了多种方法来处理这些缺失值,包括填充缺失值、删除含有缺失值的行或列。 示例代码 检测缺失值 填充缺失值

    2024年01月20日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包