chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释

这篇具有很好参考价值的文章主要介绍了chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

3.2 自由电子气的热容 Heat capacity of free electron gas

chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型

3.2.1 计算自由电子的热容 Calculation of Heat Capacity of free Electrons

T>0K, total energy of free electrons:
E = ∫ E d N = 3 5 N e E F 0 [ 1 + 5 12 π 2 ( k B T E F 0 ) 2 ] E= \int EdN = \frac{3}{5} N_e E_F^0 [1+\frac{5}{12}\pi^2 (\frac{k_B T}{E_F^0})^2] E=EdN=53NeEF0[1+125π2(EF0kBT)2]

C V e = ∂ E ∂ T = γ T C_V^e = \frac{\partial E}{\partial T} = \gamma T CVe=TE=γT

γ = π 2 N e k B 2 2 E F 0 ,    N e = N Z \gamma = \frac{\pi^2 N_e k_B^2}{2E_F^0},\ \ N_e = NZ γ=2EF0π2NekB2,  Ne=NZ

N e N_e Ne: 自由电子数 the total number of free electrons
N: 原子数 the number of atoms
Z: 每个原子提供的价电子数 the number of free electrons provided by one atom

3.2.2 电子热容与声子热容的对比 Comparison of C V e C_V^e CVe​ and C V l C_V^l CVl​

The total heat capacity of a metal includes electron contribution and phonon contribution:
C V = C V e + C V l C_V = C_V^e +C_V^l CV=CVe+CVl

high temperature ( T > Θ D T > \Theta_D T>ΘD): C V e ≪ C V l ,    C V ≈ C V l C_V^e\ll C_V^l,\ \ C_V \approx C_V^l CVeCVl,  CVCVl

low temperature ( T ≪ Θ D T \ll \Theta_D TΘD): C V = C V e + C V l = γ T + b T 3 C_V = C_V^e + C_V^l = \gamma T+b T^3 CV=CVe+CVl=γT+bT3

3.2.3 固体热容 Heat Capacity of Metal

At low temperature, the electronic contribution may be comparable with the phonon’s contribution.
低温物理中,电子热熔具有重要意义。

C V M e t a l = { C V P h o n o n = b T 3 C V E l e c t r o n = γ T C_V^{Metal}= \begin{cases} C_V^{Phonon} = bT^3 \\ C_V^{Electron} = \gamma T \end{cases} CVMetal={CVPhonon=bT3CVElectron=γT

3.3 电子传输特性 Transport properties of conductive electron

3.3.1 电导率与温度的关系Electrical conductivity vs Temperature

根据德鲁德自由电子模型: σ ∝ T − 1 / 2 \sigma \propto T^{-1/2} σT1/2

实验结果表明: σ ∝ T − 1 \sigma \propto T^{-1} σT1

What is the key factor affecting the theoretical electrical conductivity of metals?
Electrical conductivity depends on the DOS at E F E_F EF and the size of the Fermi surface. —Related to its crystal structure and its valent electrons!

影响金属理论电导率的关键因素:态密度和费米面的大小—与晶体结构和价电子有关!

根据德鲁德模型: σ = n e 2 m τ \sigma =\frac{ne^2}{m}\tau σ=mne2τ
经典理论中, τ \tau τ与温度无关。
τ = 平均自由程 l v R M S \tau = \frac{平均自由程l}{v_{RMS}} τ=vRMS平均自由程l,而 1 2 v ˉ 2 = 3 2 k B T \frac{1}{2}\bar v^2 =\frac{3}{2}k_BT 21vˉ2=23kBT,所以 σ ∝ T − 1 / 2 \sigma \propto T^{-1/2} σT1/2
根据量子力学的观点,对外界电场产生响应的仅仅为费米能附近的电子,这里的速度 v R M S v_{RMS} vRMS应当为费米速度,而费米速度与温度无关,因此关键在于平均自由程与温度的关系。
晶体中的电子具有波粒二象性,波长不满足布拉格定律,所以电子不会与离子实发生碰撞,而是自由传播(索末菲模型与德鲁德模型之间的差异)。对于理想晶体,电子波在晶体中畅行无阻, l = ∞ l=\infty l=。由于晶体缺陷和晶格振动, l ∝ T − 1 l \propto T^{-1} lT1,所以 σ ∝ T − 1 \sigma \propto T^{-1} σT1

Mattheisen’s Rule
chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型

3.3.2 导热系数 Thermal conductivity

Electrons’ Heat Transport

电子热导: K e l e c t r o n = 1 3 C V e ⋅ v ⋅ l = 1 3 C V e ⋅ v F 2 ⋅ τ = π 2 n k B T τ 3 m e K^{electron} = \frac{1}{3}C_V^e \cdot v \cdot l =\frac{1}{3}C_V^e \cdot v_F^2 \cdot \tau = \frac{\pi^2 n k_B T \tau}{3m_e} Kelectron=31CVevl=31CVevF2τ=3meπ2nkBTτ

声子热导: K p h o n o n = 1 3 C V l ⋅ v 0 ⋅ λ K^{phonon} = \frac{1}{3}C_V^l \cdot v_0 \cdot \lambda Kphonon=31CVlv0λ

电子热容比声子热容小两个数量级,但费米速度比 v 0 v_0 v0大三个数量级,所以电子热导大于声子热导
The speed of conductive electrons is in the Fermi velocity, which is much higher than that of phonons.

热流密度: J t h e r m a l = − K d T d x J_{thermal} = -K\frac{dT}{dx} Jthermal=KdxdT

K m e t a l s ≫ K n o n − m e t a l s K_{metals} \gg K_{non-metals} KmetalsKnonmetals

chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型

3.3.3 魏德曼·弗朗兹定理 Wiedemann-Franz Law

In physics, the Wiedemann–Franz law states that the ratio of the electronic contribution to the thermal conductivity (κ) and the electrical conductivity (σ) of a metal is proportional to the temperature (T).

电导率高,热导率也高。

K σ = L T \frac{K}{\sigma} = LT σK=LT

L:洛伦兹常数,The proportionality constant L is known as the Lorentz number

理论值: L = 2.45 × 1 0 − 8 ( V / K ) 2 L= 2.45\times 10^{-8}(V/K)^2 L=2.45×108(V/K)2

K e σ = π 2 3 ( k B e ) 2 T \frac{K_e}{\sigma} = \frac{\pi^2}{3}\left (\frac{k_B}{e} \right)^2 T σKe=3π2(ekB)2T

3.3.4 霍尔效应 Hall effect

In a conductor, an associated electric field (Hall field) is built in the direction J×B when a current J flows across a magnetic field B.
在导体中,当电流J流过磁场B时,会在J×B方向上产生相关的电场(霍尔场)。

chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型

Lorentz force causes the deflection of electrons and then accumulate electrons on one face of the conductor. At stable state, the electrostatic force of Hall field just cancels the Lorentz force duo to magnetic field.

Quantum Hall Effect

In 1985 Klaus von Klitzing won the Nobel Prize for discovery of the quantized Hall effect. In a two-dimensional metal or semiconductor, the Hall effect is also observed, but at low temperatures a series of steps appear in the Hall resistance as a function of magnetic field instead of the monotonic increase. What is more, these steps occur at incredibly precise values of resistance which are the same no matter what sample is investigated. The resistance is quantized in units of h / e 2 h/e^2 h/e2 divided by an integer. This is the QUANTUM HALL EFFECT.
chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型

3.4 电子发射与接触电势 Electron emission and contacting voltage

电子发射:电子脱离材料的束缚成为自由电子

  • 冷发射Cold electron emission:low pressure , high voltage(尖端放电,场发射)
  • 热发射Thermal electron emission: high temperature (高温热钨电镜)

功函数 work function:每个电子脱离晶体发射出来需要的能量the amount of energy per electron is required to emit (i.e. removing from a material). (Analogous to ionization potential)

The work functions of metals change with the temperature.

W = ϕ = V 0 − E F W = \phi = V_0 -E_F W=ϕ=V0EF

W ~ several eV
V 0 V_0 V0: free electron energy in vacuum

chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型
chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型
接触电势 contacting voltage:两个不同材料相接触,在界面上产生接触电势

费米能不同,电子自发跃迁,在同一系统中拉平费米能,进而去研究。

接触电势差等于两种材料的功函数之差除以e。
V 12 = 1 e ( W 2 − W 1 ) = 1 2 ( E 1 F − E 2 F ) V_{12}= \frac{1}{e} (W_2 - W_1) = \frac{1}{2}(E_{1F} - E_{2F}) V12=e1(W2W1)=21(E1FE2F)
chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型
chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型
chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释,固体物理学习笔记,材料工程,固体物理,半导体物理,自由电子模型文章来源地址https://www.toymoban.com/news/detail-665487.html

到了这里,关于chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Chapter 8 - 14. Congestion Management in TCP Storage Networks

    Queue Utilization Considerations TCP/IP networks typically aim for non-empty queues so that the queues always have packets for transmission without keeping the link idle. This achieves a high transmission rate and returns on investments (cost per Gbps). TCP/IP 网络通常以非空队列为目标,使队列中始终有数据包可供传输,而不会使链路

    2024年02月21日
    浏览(38)
  • Chapter 8 - 25. Congestion Management in TCP Storage Networks

    Modified TCP Implementations Standard TCP with ECN detects the presence of congestion and reacts to it by reducing the congestion window as if packets had been dropped. In data center environments, where the links are of high capacity and end-to-end delay is low, the standard TCP congestion control mechanisms, such as reducing the congestion window by half,

    2024年03月23日
    浏览(35)
  • Chapter 8 - 24. Congestion Management in TCP Storage Networks

    iSCSI and NVMe/TCP with VXLAN Virtual Extensible LAN (VXLAN) extends Layer 2 domains over a Layer 3 data center network. The end devices do not know that their traffic is passing through VXLAN tunnels. Also, the traffic classification based on the DSCP field in the IP header and ECN bits are preserved in VXLAN. Because of these reasons, everything that has b

    2024年03月12日
    浏览(38)
  • Chapter 8 - 18. Congestion Management in TCP Storage Networks

    Comparison with Lossless Networks Recall that in Fibre Channel fabrics (explained in  Chapter 3 , “ Detecting Congestion in Fibre Channel Fabrics ”) and lossless Ethernet networks (explained in  Chapter 7 ), when the source of congestion is within an end-device, these devices are called slow-drain devices and they are detected using the metrics of the

    2024年03月14日
    浏览(48)
  • Chapter 8 - 16. Congestion Management in TCP Storage Networks

    Active Queue Management As previously mentioned, dropping or marking schemes for packets that are waiting in a queue can significantly influence TCP’s behavior on the end devices. These schemes are called Active Queue Management (AQM). 如前所述,针对在队列中等待的数据包的丢弃或标记方案会极大地影响 TCP 在终端设备上的行为

    2024年02月20日
    浏览(37)
  • Chapter 8 - 13. Congestion Management in TCP Storage Networks

    Switch Buffer Management Recall that during network congestion, a TCP sender relies on the following events for reducing its transmission rate. 回想一下,在网络拥塞期间, TCP 发送端依靠以下事件来降低传输速率。 1. When the sender detects packet loss because of the following reasons. 当发送方因以下原因检测到数据包丢失

    2024年02月21日
    浏览(39)
  • IPQ6010: Leading a new chapter in smart home and IoT fields

    With the rapid development of smart home and Internet of Things technology, the demand for high-performance processors is also growing. The IPQ6010 system-on-chip launched by Qualcomm Technologies is designed to meet this demand. It has become a leader in smart home and IoT with its powerful processing performance, excellent graphics performance and high-spe

    2024年01月22日
    浏览(44)
  • An Empirical Study of License Conflict in Free and Open Source Software论文分享

    吴敬征 中国科学院软件研究所博导 研究领域: 软件安全与漏洞挖掘、开源软件与供应链安全、智能系统与机器学习、操作系统与指令集研究、网络安全与隐蔽通信。 实验室名称 :智能软件研究中心 六大领域 :智能理论、操作系统、开源生态、编译技术、智能安全、智能测

    2024年02月20日
    浏览(43)
  • Chapter 7 - 15. Congestion Management in Ethernet Storage Networks以太网存储网络的拥塞管理

    Congestion Notification in Routed Lossless Ethernet Networks End devices and their applications may not be aware of congestion in the network. A culprit device may continue to send (or solicit) more traffic on the network making the severity of congestion worse or increasing its duration. To solve this problem, the network switches can ‘explicitly’ notif

    2024年01月22日
    浏览(53)
  • Chapter 7 - 14. Congestion Management in Ethernet Storage Networks以太网存储网络的拥塞管理

    PFC Watchdog PFC watchdog works similarly to Pause timeout, but it only drops the traffic in the queue that is unable to transmit continuously for a timeout duration because of receiving PFC Pause frames. PFC 进程看门狗的工作原理与暂停超时类似,但它只会丢弃队列中因收到 PFC 暂停帧而无法在超时时间内连续传输的流量。

    2024年01月22日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包