疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)

这篇具有很好参考价值的文章主要介绍了疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)

目录

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)

1.疲劳驾驶检测和识别方法

2.人脸检测方法

3.疲劳驾驶识别模型(Python)

(1) 疲劳驾驶识别模型的训练

(2) 将Pytorch模型转换ONNX模型

(3) 将ONNX模型转换为TNN模型

4.疲劳驾驶识别模型C/C++部署

(1)项目结构

(2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

(3)部署TNN模型

(4)CMake配置

(5)main源码

(6)源码编译和运行

(7)Demo测试效果 

5.项目源码下载


这是项目《疲劳驾驶检测和识别》系列之《C++实现疲劳驾驶检测和识别(含源码,可实时检测)》,主要分享将Python训练后的疲劳驾驶检测和识别模型(mobilenet_v2)部署到C/C++平台。我们将开发一个简易的、可实时运行的疲劳驾驶检测和识别的C/C++ Demo。准确率还挺高的,采用轻量级mobilenet_v2模型的疲劳驾驶检测和识别准确率也可以高达97.86%左右,基本满足业务性能需求。C/C ++版本的疲劳驾驶检测和识别模型推理支持CPU和GPU加速,开启GPU(OpenCL)加速,可以达到实时的检测识别效果,基本满足业务的性能需求。

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别

 先展示一下,C/C++版本的疲劳驾驶检测和识别Demo效果(不同类别使用不同颜色表示):

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别

 疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别

尊重原创,转载请注明出处】 https://blog.csdn.net/guyuealian/article/details/131834980


更多项目《疲劳驾驶检测和识别》系列文章请参考:

  1. 疲劳驾驶检测和识别1: 疲劳驾驶检测和识别数据集(含下载链接)https://blog.csdn.net/guyuealian/article/details/131718648
  2. 疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)https://blog.csdn.net/guyuealian/article/details/131834946
  3. 疲劳驾驶检测和识别3:Android实现疲劳驾驶检测和识别(含源码,可实时检测)https://blog.csdn.net/guyuealian/article/details/131834970

  4. 疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)https://blog.csdn.net/guyuealian/article/details/131834980

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别


1.疲劳驾驶检测和识别方法

疲劳驾驶检测和识别方法有多种实现方案,这里采用最常规的方法:基于人脸检测+疲劳驾驶分类识别方法,即先采用通用的人脸检测模型,进行人脸检测定位人体区域,然后按照一定规则裁剪人脸检测区域,再训练一个疲劳驾驶行为识别分类器,完成疲劳驾驶检测和识别任务;

这样做的好处,是可以利用现有的人脸检测模型进行人脸检测,而无需重新标注疲劳驾驶的人脸检测框,可减少人工标注成本低;而疲劳驾驶分类数据相对而言比较容易采集,分类模型可针对性进行优化。

当然,也可以直接基于目标检测的方法直接检测疲劳驾驶和非疲劳驾驶,Python版本的项目提供了疲劳驾驶目标检测的数据集


2.人脸检测方法

本项目人脸检测训练代码请参考:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB 

这是一个基于SSD改进且轻量化后人脸检测模型,很slim,整个模型仅仅1.7M左右,在普通Android手机都可以实时检测。人脸检测方法在网上有一大堆现成的方法可以使用,完全可以不局限我这个方法。

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别​​​

 关于人脸检测的方法,可以参考我的博客:

  • 行人检测和人脸检测和人脸关键点检测(C++/Android源码)
  • 人脸检测和行人检测2:YOLOv5实现人脸检测和行人检测(含数据集和训练代码)

3.疲劳驾驶识别模型(Python)

(1) 疲劳驾驶识别模型的训练

本篇博文不含python版本的疲劳驾驶识别分类模型以及相关训练代码,关于疲劳驾驶识别模型的训练方法,请参考本人另一篇博文:疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)https://blog.csdn.net/guyuealian/article/details/131834946

(2) 将Pytorch模型转换ONNX模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署。部署流程可分为四步:训练模型->将模型转换ONNX模型->将ONNX模型转换为TNN模型->C/C++部署TNN模型。

训练好Pytorch模型后,我们需要先将模型转换为ONNX模型,以便后续模型部署。

  • 原始项目提供转换脚本,你只需要修改model_file为你模型路径即可
  •  convert_torch_to_onnx.py实现将Pytorch模型转换ONNX模型的脚本
python libs/convert/convert_torch_to_onnx.py
"""
This code is used to convert the pytorch model into an onnx format model.
"""
import sys
import os

sys.path.insert(0, os.getcwd())
import torch.onnx
import onnx
from classifier.models.build_models import get_models
from basetrainer.utils import torch_tools


def build_net(model_file, net_type, input_size, num_classes, width_mult=1.0):
    """
    :param model_file: 模型文件
    :param net_type: 模型名称
    :param input_size: 模型输入大小
    :param num_classes: 类别数
    :param width_mult:
    :return:
    """
    model = get_models(net_type, input_size, num_classes, width_mult=width_mult, is_train=False, pretrained=False)
    state_dict = torch_tools.load_state_dict(model_file)
    model.load_state_dict(state_dict)
    return model


def convert2onnx(model_file, net_type, input_size, num_classes, width_mult=1.0, device="cpu", onnx_type="default"):
    model = build_net(model_file, net_type, input_size, num_classes, width_mult=width_mult)
    model = model.to(device)
    model.eval()
    model_name = os.path.basename(model_file)[:-len(".pth")] + ".onnx"
    onnx_path = os.path.join(os.path.dirname(model_file), model_name)
    # dummy_input = torch.randn(1, 3, 240, 320).to("cuda")
    dummy_input = torch.randn(1, 3, input_size[1], input_size[0]).to(device)
    # torch.onnx.export(model, dummy_input, onnx_path, verbose=False,
    #                   input_names=['input'],output_names=['scores', 'boxes'])
    do_constant_folding = True
    if onnx_type == "default":
        torch.onnx.export(model, dummy_input, onnx_path, verbose=False, export_params=True,
                          do_constant_folding=do_constant_folding,
                          input_names=['input'],
                          output_names=['output'])
    elif onnx_type == "det":
        torch.onnx.export(model,
                          dummy_input,
                          onnx_path,
                          do_constant_folding=do_constant_folding,
                          export_params=True,
                          verbose=False,
                          input_names=['input'],
                          output_names=['scores', 'boxes', 'ldmks'])
    elif onnx_type == "kp":
        torch.onnx.export(model,
                          dummy_input,
                          onnx_path,
                          do_constant_folding=do_constant_folding,
                          export_params=True,
                          verbose=False,
                          input_names=['input'],
                          output_names=['output'])
    onnx_model = onnx.load(onnx_path)
    onnx.checker.check_model(onnx_model)
    print(onnx_path)


if __name__ == "__main__":
    net_type = "mobilenet_v2"
    width_mult = 1.0
    input_size = [128, 128]
    num_classes = 2
    model_file = "work_space/mobilenet_v2_1.0_CrossEntropyLoss/model/best_model_022_98.1848.pth"
    convert2onnx(model_file, net_type, input_size, num_classes, width_mult=width_mult)

(3) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行C/C++端上部署

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别​​​​

4.疲劳驾驶识别模型C/C++部署

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置好开发环境。

(1)项目结构

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别

(2)配置开发环境(OpenCV+OpenCL+base-utils+TNN)

项目IDE开发工具使用CLion,相关依赖库主要有OpenCV,base-utils以及TNN和OpenCL(可选),其中OpenCV必须安装,OpenCL用于模型加速,base-utils以及TNN已经配置好,无需安装;

项目仅在Ubuntu18.04进行测试,Windows系统下请自行配置和编译

  • 安装OpenCV:图像处理

图像处理(如读取图片,图像裁剪等)都需要使用OpenCV库进行处理

安装教程:Ubuntu18.04安装opencv和opencv_contrib

OpenCV库使用opencv-4.3.0版本,opencv_contrib库暂时未使用,可不安装

  • 安装OpenCL:模型加速

 安装教程:Ubuntu16.04 安装OpenCV&OpenCL

OpenCL用于模型GPU加速,若不使用OpenCL进行模型推理加速,纯C++推理模型,速度会特别特别慢

  • base-utils:C++库

GitHub:https://github.com/PanJinquan/base-utils (无需安装,项目已经配置了)

base_utils是个人开发常用的C++库,集成了C/C++ OpenCV等常用的算法

  • TNN:模型推理

GitHub:https://github.com/Tencent/TNN (无需安装,项目已经配置了)

由腾讯优图实验室开源的高性能、轻量级神经网络推理框架,同时拥有跨平台、高性能、模型压缩、代码裁剪等众多突出优势。TNN框架在原有Rapidnet、ncnn框架的基础上进一步加强了移动端设备的支持以及性能优化,同时借鉴了业界主流开源框架高性能和良好拓展性的特性,拓展了对于后台X86, NV GPU的支持。手机端 TNN已经在手机QQ、微视、P图等众多应用中落地,服务端TNN作为腾讯云AI基础加速框架已为众多业务落地提供加速支持。

(3)部署TNN模型

项目实现了C/C++版本的疲劳驾驶检测和识别,模型推理采用TNN部署框架(支持多线程CPU和GPU加速推理);图像处理采用OpenCV库,模型加速采用OpenCL,在普通设备即可达到实时处理。

如果你想在这个 Demo部署你自己训练的模型,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把原始的模型替换成你自己的TNN模型即可。

(4)CMake配置

这是CMakeLists.txt,其中主要配置OpenCV+OpenCL+base-utils+TNN这四个库,Windows系统下请自行配置和编译

cmake_minimum_required(VERSION 3.5)
project(Detector)

add_compile_options(-fPIC) # fix Bug: can not be used when making a shared object
set(CMAKE_CXX_FLAGS "-Wall -std=c++11 -pthread")
#set(CMAKE_CXX_FLAGS_RELEASE "-O2 -DNDEBUG")
#set(CMAKE_CXX_FLAGS_DEBUG "-g")

if (NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CONFIGURATION_TYPES)
    # -DCMAKE_BUILD_TYPE=Debug
    # -DCMAKE_BUILD_TYPE=Release
    message(STATUS "No build type selected, default to Release")
    set(CMAKE_BUILD_TYPE "Release" CACHE STRING "Build type (default Debug)" FORCE)
endif ()

# opencv set
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS} ./src/)
#MESSAGE(STATUS "OpenCV_INCLUDE_DIRS = ${OpenCV_INCLUDE_DIRS}")

# base_utils
set(BASE_ROOT 3rdparty/base-utils) # 设置base-utils所在的根目录
add_subdirectory(${BASE_ROOT}/base_utils/ base_build) # 添加子目录到build中
include_directories(${BASE_ROOT}/base_utils/include)
include_directories(${BASE_ROOT}/base_utils/src)
MESSAGE(STATUS "BASE_ROOT = ${BASE_ROOT}")


# TNN set
# Creates and names a library, sets it as either STATIC
# or SHARED, and provides the relative paths to its source code.
# You can define multiple libraries, and CMake buil ds it for you.
# Gradle automatically packages shared libraries with your APK.
# build for platform
# set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
if (CMAKE_SYSTEM_NAME MATCHES "Android")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_ARM_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_BUILD_SHARED OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    #set(TNN_HUAWEI_NPU_ENABLE OFF CACHE BOOL "" FORCE)
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DTNN_ARM_ENABLE)              # for Android CPU
    add_definitions(-DDEBUG_ANDROID_ON)            # for Android Log
    add_definitions(-DPLATFORM_ANDROID)
elseif (CMAKE_SYSTEM_NAME MATCHES "Linux")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_X86_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DDEBUG_ON)                    # for WIN/Linux Log
    add_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Log
    add_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV show
    add_definitions(-DPLATFORM_LINUX)
elseif (CMAKE_SYSTEM_NAME MATCHES "Windows")
    set(TNN_OPENCL_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_CPU_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_X86_ENABLE ON CACHE BOOL "" FORCE)
    set(TNN_QUANTIZATION_ENABLE OFF CACHE BOOL "" FORCE)
    set(TNN_OPENMP_ENABLE ON CACHE BOOL "" FORCE)  # Multi-Thread
    add_definitions(-DTNN_OPENCL_ENABLE)           # for OpenCL GPU
    add_definitions(-DDEBUG_ON)                    # for WIN/Linux Log
    add_definitions(-DDEBUG_LOG_ON)                # for WIN/Linux Log
    add_definitions(-DDEBUG_IMSHOW_OFF)            # for OpenCV show
    add_definitions(-DPLATFORM_WINDOWS)
endif ()
set(TNN_ROOT 3rdparty/TNN)
include_directories(${TNN_ROOT}/include)
include_directories(${TNN_ROOT}/third_party/opencl/include)
add_subdirectory(${TNN_ROOT}) # 添加外部项目文件夹
set(TNN -Wl,--whole-archive TNN -Wl,--no-whole-archive)# set TNN library
MESSAGE(STATUS "TNN_ROOT = ${TNN_ROOT}")


# Detector
include_directories(src)
set(SRC_LIST
        src/object_detection.cpp
        src/classification.cpp
        src/Interpreter.cpp)
add_library(dmcv SHARED ${SRC_LIST})
target_link_libraries(dmcv ${OpenCV_LIBS} base_utils)
MESSAGE(STATUS "DIR_SRCS = ${SRC_LIST}")

add_executable(Detector src/main.cpp)
#add_executable(Detector src/main_for_detect.cpp)
#add_executable(Detector src/main_for_yolov5.cpp)
target_link_libraries(Detector dmcv ${TNN} -lpthread)


(5)main源码

主程序中函数main实现提供了疲劳驾驶识别的使用方法,支持图片,视频和摄像头测试

  •     test_image_file();   // 测试图片文件
  •     test_video_file();   // 测试视频文件
  •     test_camera();       //测试摄像头
//
// Created by Pan on 2020/6/24.
//

#include "object_detection.h"
#include "classification.h"
#include <iostream>
#include <string>
#include <vector>
#include "file_utils.h"
#include "image_utils.h"

using namespace dl;
using namespace vision;
using namespace std;


const int num_thread = 1; // 开启CPU线程数目
DeviceType device = GPU;  // 选择运行设备CPU/GPU
// 人脸检测模型
const char *det_model_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnmodel";
const char *det_proto_file = (char *) "../data/tnn/face/rfb-face-mask-320-320_sim.opt.tnnproto";
ObjectDetectionParam model_param = FACE_MODEL;//模型参数
// 疲劳驾驶分类模型
const char *cls_model_file = (char *) "../data/tnn/drowsy/mobilenet_v2_112_112.tnnmodel";
const char *cls_proto_file = (char *) "../data/tnn/drowsy/mobilenet_v2_112_112.tnnproto";
ClassificationParam ClassParam = DROWSY_MODEL;//模型参数

// 设置检测阈值
const float scoreThresh = 0.5;
const float iouThresh = 0.3;
ObjectDetection *detector = new ObjectDetection(det_model_file,
                                                det_proto_file,
                                                model_param,
                                                num_thread,
                                                device);

Classification *classifier = new Classification(cls_model_file,
                                                cls_proto_file,
                                                ClassParam,
                                                num_thread,
                                                device);

/***
 * 测试图片文件
 */
void test_image_file() {
    //测试图片的目录
    string image_dir = "../data/test_image";
    std::vector<string> image_list = get_files_list(image_dir);
    for (string image_path:image_list) {
        cv::Mat bgr_image = cv::imread(image_path);
        if (bgr_image.empty()) continue;
        FrameInfo resultInfo;
        // 进行人脸检测
        detector->detect(bgr_image, &resultInfo, scoreThresh, iouThresh);
        // 进行图像分类
        classifier->detect(bgr_image, &resultInfo);
        // 可视化检测结果
        classifier->visualizeResult(bgr_image, &resultInfo);
    }
    delete detector;
    detector = nullptr;
    delete classifier;
    classifier = nullptr;
    printf("FINISHED.\n");
}

/***
 * 测试视频文件
 * @return
 */
int test_video_file() {
    //测试视频文件
    string video_file = "../data/video/video-test.mp4";
    cv::VideoCapture cap;
    bool ret = get_video_capture(video_file, cap);
    cv::Mat frame;
    while (ret) {
        cap >> frame;
        if (frame.empty()) break;
        FrameInfo resultInfo;
        // 进行人脸检测
        detector->detect(frame, &resultInfo, scoreThresh, iouThresh);
        // 进行图像分类
        classifier->detect(frame, &resultInfo);
        // 可视化检测结果
        classifier->visualizeResult(frame, &resultInfo, 20);
    }
    cap.release();
    delete detector;
    detector = nullptr;
    delete classifier;
    classifier = nullptr;
    printf("FINISHED.\n");
    return 0;

}


/***
 * 测试摄像头
 * @return
 */
int test_camera() {
    int camera = 0; //摄像头ID号(请修改成自己摄像头ID号)
    cv::VideoCapture cap;
    bool ret = get_video_capture(camera, cap);
    cv::Mat frame;
    while (ret) {
        cap >> frame;
        if (frame.empty()) break;
        FrameInfo resultInfo;
        // 进行人脸检测
        detector->detect(frame, &resultInfo, scoreThresh, iouThresh);
        // 进行图像分类
        classifier->detect(frame, &resultInfo);
        // 可视化检测结果
        classifier->visualizeResult(frame, &resultInfo, 20);
    }
    cap.release();
    delete detector;
    detector = nullptr;
    delete classifier;
    classifier = nullptr;
    printf("FINISHED.\n");
    return 0;

}


int main() {
    test_image_file();   // 测试图片文件
    //test_video_file();   // 测试视频文件
    //test_camera();       //测试摄像头
    return 0;
}

(6)源码编译和运行

编译脚本,或者直接:bash build.sh

#!/usr/bin/env bash
if [ ! -d "build/" ];then
  mkdir "build"
else
  echo "exist build"
fi
cd build
cmake ..
make -j4
sleep 1
./demo

  • 如果你要测试CPU运行的性能,请修改src/main.cpp

DeviceType device = CPU;

  • 如果你要测试GPU运行的性能,请修改src/main.cpp (需配置好OpenCL) 

DeviceType device = GPU;

PS:纯CPU C++推理模式比较耗时,需要几秒的时间,而开启OpenCL加速后,GPU模式耗时仅需十几毫秒,性能极大的提高。

(7)Demo测试效果 

 C++版本与Python版本的结果几乎是一致,下面是疲劳驾驶识别效果展示(其中不同类别用不同颜色表示了)

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别

疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别 疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别
疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别 疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别
疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别 疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测),智能驾驶,疲劳驾驶,C++,C++疲劳驾驶,疲劳驾驶检测,疲劳驾驶识别

5.项目源码下载

C++实现疲劳驾驶识别项目源码下载地址:C++实现疲劳驾驶检测和识别(含源码,可实时检测)

整套项目源码内容包含:

  1. 提供C/C++版本的人脸检测模型
  2. 提供C/C++版本的疲劳驾驶识别分类模型
  3. C++源码支持CPU和GPU,开启GPU(OpenCL)可以实时检测和识别(纯CPU推理速度很慢,模型加速需要配置好OpenCL,GPU推理约15ms左右)
  4. 项目配置好了base-utils和TNN,而OpenCV和OpenCL需要自行编译安装
  5. C/C++ Demo支持图片,视频,摄像头测试

 Android疲劳驾驶检测和识别APP Demo体验:https://download.csdn.net/download/guyuealian/88088257

如果你需要疲劳驾驶检测和识别的训练代码,请参考:《疲劳驾驶检测和识别2:Pytorch实现疲劳驾驶检测和识别(含疲劳驾驶数据集和训练代码)》https://blog.csdn.net/guyuealian/article/details/131834946文章来源地址https://www.toymoban.com/news/detail-666092.html

到了这里,关于疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第十八届“挑战杯”-基于端云算力协同的疲劳驾驶智能识别-2023.03.28

    目录 时间 内容 具体 知识点 评分 数据 领域调研 ChatGPT询问 论文: 开源代码: null https://competition.huaweicloud.com/information/1000041855/circumstance   主题:智能驾驶场景(疲劳/分神驾驶检测),利用端侧算力单元与云上算力中心协同,让车辆能够更准确更迅速的检测疲劳/分神驾驶,

    2024年02月05日
    浏览(61)
  • 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测)

    目录 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测) 1. 前言 2. 跌倒检测数据集说明 3. 基于YOLOv5的跌倒检测模型训练 4.跌倒检测模型Android部署 (1) 将Pytorch模型转换ONNX模型 (2) 将ONNX模型转换为TNN模型 (3) Android端上部署模型 (4) 一些异常错误解决方法

    2024年02月01日
    浏览(44)
  • 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测)

    目录 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测) 1. 前言 2. 行人检测(人体检测)检测模型(YOLOv5) (1)行人检测(人体检测)模型训练 (2)将Pytorch模型转换ONNX模型 (3)将ONNX模型转换为TNN模型 3. 行人检测(人体检测)C++端上部署 (1)项目结构 (2)配置开

    2024年02月01日
    浏览(77)
  • 疲劳驾驶检测系统-YOLOv5-疲劳检测、分心检测、玩手机、抽烟、喝水检测(毕业设计)

    本项目效果展示视频: https://www.bilibili.com/video/BV1bj411S7rA/?share_source=copy_webvd_source=138d2e7f294c3405b6ea31a67534ae1a 1、本项目通过YOLOv8/YOLOv7/YOLOv5、Dlib和PySide2实现了一个疲劳驾驶检测系统,可为一些同学的课设、大作业等提供参考。该项目分为两个检测部分,疲劳检测和分心行为检测

    2024年02月10日
    浏览(41)
  • 基于RAM树莓派实现智能家居:语音识别控制,Socket网络控制,火灾报警检测,实时监控

    目录 一   项目说明 ①   设计框架 ②   功能说明 ③   硬件说明 ④   软件说明 二   项目代码 1 mainPro.c 主函数 2 InputCommand.h 控制设备头文件 3 contrlDevices.h 外接设备头文件 4 bathroomLight.c 泳池灯 5 livingroomLight.c 卧室灯 6 restaurantLight.c 餐厅灯 7 upstairLight.c 二楼灯 8 fire.c 火焰

    2024年02月02日
    浏览(59)
  • 基于ARM树莓派实现智能家居:语音识别控制,Socket网络控制,火灾报警检测,实时监控

    目录 一   项目说明 ①   设计框架 ②   功能说明 ③   硬件说明 ④   软件说明 二   项目代码 1 mainPro.c 主函数 2 InputCommand.h 控制设备头文件 3 contrlDevices.h 外接设备头文件 4 bathroomLight.c 泳池灯 5 livingroomLight.c 卧室灯 6 restaurantLight.c 餐厅灯 7 upstairLight.c 二楼灯 8 fire.c 火焰

    2024年02月03日
    浏览(66)
  • 人脸检测和人体检测4:C++实现人脸检测和人体检测(含源码,可实时检测)

    目录 人脸检测和人体检测4:C++实现人脸检测和人体检测(含源码,可实时检测) 1. 前言 2. 人脸检测和人体检测检测模型(YOLOv5) (1)人脸检测和人体检测模型训练 (2)将Pytorch模型转换ONNX模型 (3)将ONNX模型转换为TNN模型 3. 人脸检测和人体检测C++端上部署 (1)项目结构

    2024年02月05日
    浏览(44)
  • 毕设 深度学习疲劳驾驶检测 opencv python

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年01月17日
    浏览(51)
  • 疲劳驾驶检测系统-YOLOv8/YOLOv7/YOLOv5-疲劳检测、分心检测、玩手机、抽烟、喝水检测(毕业设计)

    本项目效果展示视频: https://www.bilibili.com/video/BV1bj411S7rA/?share_source=copy_webvd_source=138d2e7f294c3405b6ea31a67534ae1a 1、本项目通过YOLOv8/YOLOv7/YOLOv5、Dlib和PySide2实现了一个疲劳驾驶检测系统,可为一些同学的课设、大作业等提供参考。该项目分为两个检测部分,疲劳检测和分心行为检测

    2024年02月05日
    浏览(51)
  • 计算机设计大赛 疲劳驾驶检测系统 python

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https:/

    2024年03月12日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包