[oneAPI] 基于BERT预训练模型的英文文本蕴含任务

这篇具有很好参考价值的文章主要介绍了[oneAPI] 基于BERT预训练模型的英文文本蕴含任务。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517
Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/

Intel® DevCloud for oneAPI 和 Intel® Optimization for PyTorch

我们在Intel® DevCloud for oneAPI平台上构建了我们的实验环境,充分利用了其完全虚拟化的特性,使我们能够专注于模型的开发和优化,无需烦心底层环境的配置和维护。为了进一步提升我们的实验效果,我们充分利用了Intel® Optimization for PyTorch,将其应用于我们的PyTorch模型中,从而实现了高效的优化。
[oneAPI] 基于BERT预训练模型的英文文本蕴含任务,python杂记,oneapi,bert,人工智能

基于BERT预训练模型的英文文本蕴含任务

自然语言推理(简称NLI)是自然语言处理领域的一个重要任务,而多种文本蕴含(Textual Entailment)是其一个具体的子任务。MNLI(MultiNLI)是一个广泛使用的NLI数据集,旨在评估模型对于文本蕴含关系的理解能力。

在MNLI任务中,给定一个前提句子(premise)和一个假设句子(hypothesis),模型需要判断假设句子是否可以从前提句子中推断出来。这涉及到三种类别的关系:蕴含(entailment)、中性(neutral)和矛盾(contradiction)。例如,对于前提句子 “A cat is sitting on the couch.” 和假设句子 “A cat is on a piece of furniture.”,模型应该判断这两个句子之间的关系是蕴含。

MNLI的任务设计具有挑战性,要求模型不仅仅理解句子的字面含义,还需要进行逻辑推理和上下文理解。解决MNLI任务对于构建具有深层次语义理解能力的自然语言处理模型具有重要意义,可以应用于问答系统、文本理解和语义推理等领域。

基于BERT的文本蕴含(文本对分类)任务实质上是对一个文本序列进行分类。只是按照BERT模型的思想,文本对分类任务在数据集的构建过程中需要通过Segment Embedding来区分前后两个不同的序列。换句话说,与普通的单文本分类任务相比,文本对的分类任务在构建模型输入上发生了变换。

语料介绍

在这里,我们使用到的是论文中所提到的MNLI(The Multi-Genre Natural Language Inference Corpus, 多类型自然语言推理数据库)自然语言推断任务数据集。也就是给定前提(premise)语句和假设(hypothesis)语句,任务是预测前提语句是否包含假设(蕴含, entailment),与假设矛盾(矛盾,contradiction)或者两者都不(中立,neutral)。

{"annotator_labels": ["entailment", "neutral", "entailment", "neutral", "entailment"], "genre": "oup", "gold_label": "entailment", "pairID": "82890e", "promptID": "82890", "sentence1": " From Home Work to Modern Manufacture", "sentence1_binary_parse": "( From ( ( Home Work ) ( to ( Modern Manufacture ) ) ) )", "sentence1_parse": "(ROOT (PP (IN From) (NP (NP (NNP Home) (NNP Work)) (PP (TO to) (NP (NNP Modern) (NNP Manufacture))))))", "sentence2": "Modern manufacturing has changed over time.", "sentence2_binary_parse": "( ( Modern manufacturing ) ( ( has ( changed ( over time ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (NNP Modern) (NN manufacturing)) (VP (VBZ has) (VP (VBN changed) (PP (IN over) (NP (NN time))))) (. .)))" }
{"annotator_labels": ["neutral", "neutral", "entailment", "neutral", "neutral"], "genre": "nineeleven", "gold_label": "neutral", "pairID": "16525n", "promptID": "16525", "sentence1": "They were promptly executed.", "sentence1_binary_parse": "( They ( ( were ( promptly executed ) ) . ) )", "sentence1_parse": "(ROOT (S (NP (PRP They)) (VP (VBD were) (VP (ADVP (RB promptly)) (VBN executed))) (. .)))", "sentence2": "They were executed immediately upon capture.", "sentence2_binary_parse": "( They ( ( were ( ( executed immediately ) ( upon capture ) ) ) . ) )", "sentence2_parse": "(ROOT (S (NP (PRP They)) (VP (VBD were) (VP (VBN executed) (ADVP (RB immediately)) (PP (IN upon) (NP (NN capture))))) (. .)))"}

由于该数据集同时也可用于其它任务中,因此除了我们需要的前提和假设两个句子和标签之外,还有每个句子的语法解析结构等等。在这里,下载完成数据后只需要执行项目中的format.py脚本即可将原始数据划分成训练集、验证集和测试集。格式化后的数据形式如下所示:

From Home Work to Modern Manufacture_!_Modern manufacturing has changed over time._!_1
They were promptly executed._!_They were executed immediately upon capture._!_2

数据集构建

定义一个类,并在类的初始化过程中根据训练语料完成字典的构建等工作

class LoadSingleSentenceClassificationDataset:
    def __init__(self,
                 vocab_path='./vocab.txt',  #
                 tokenizer=None,
                 batch_size=32,
                 max_sen_len=None,
                 split_sep='\n',
                 max_position_embeddings=512,
                 pad_index=0,
                 is_sample_shuffle=True
                 ):

        """

        :param vocab_path: 本地词表vocab.txt的路径
        :param tokenizer:
        :param batch_size:
        :param max_sen_len: 在对每个batch进行处理时的配置;
                            当max_sen_len = None时,即以每个batch中最长样本长度为标准,对其它进行padding
                            当max_sen_len = 'same'时,以整个数据集中最长样本为标准,对其它进行padding
                            当max_sen_len = 50, 表示以某个固定长度符样本进行padding,多余的截掉;
        :param split_sep: 文本和标签之前的分隔符,默认为'\t'
        :param max_position_embeddings: 指定最大样本长度,超过这个长度的部分将本截取掉
        :param is_sample_shuffle: 是否打乱训练集样本(只针对训练集)
                在后续构造DataLoader时,验证集和测试集均指定为了固定顺序(即不进行打乱),修改程序时请勿进行打乱
                因为当shuffle为True时,每次通过for循环遍历data_iter时样本的顺序都不一样,这会导致在模型预测时
                返回的标签顺序与原始的顺序不一样,不方便处理。

        """
        self.tokenizer = tokenizer
        self.vocab = build_vocab(vocab_path)
        self.PAD_IDX = pad_index
        self.SEP_IDX = self.vocab['[SEP]']
        self.CLS_IDX = self.vocab['[CLS]']
        # self.UNK_IDX = '[UNK]'

        self.batch_size = batch_size
        self.split_sep = split_sep
        self.max_position_embeddings = max_position_embeddings
        if isinstance(max_sen_len, int) and max_sen_len > max_position_embeddings:
            max_sen_len = max_position_embeddings
        self.max_sen_len = max_sen_len
        self.is_sample_shuffle = is_sample_shuffle

    @cache
    def data_process(self, filepath, postfix='cache'):
        """
        将每一句话中的每一个词根据字典转换成索引的形式,同时返回所有样本中最长样本的长度
        :param filepath: 数据集路径
        :return:
        """
        raw_iter = open(filepath, encoding="utf8").readlines()
        data = []
        max_len = 0
        for raw in tqdm(raw_iter, ncols=80):
            line = raw.rstrip("\n").split(self.split_sep)
            s, l = line[0], line[1]
            tmp = [self.CLS_IDX] + [self.vocab[token] for token in self.tokenizer(s)]
            if len(tmp) > self.max_position_embeddings - 1:
                tmp = tmp[:self.max_position_embeddings - 1]  # BERT预训练模型只取前512个字符
            tmp += [self.SEP_IDX]
            tensor_ = torch.tensor(tmp, dtype=torch.long)
            l = torch.tensor(int(l), dtype=torch.long)
            max_len = max(max_len, tensor_.size(0))
            data.append((tensor_, l))
        return data, max_len

    def load_train_val_test_data(self, train_file_path=None,
                                 val_file_path=None,
                                 test_file_path=None,
                                 only_test=False):
        postfix = str(self.max_sen_len)
        test_data, _ = self.data_process(filepath=test_file_path, postfix=postfix)
        test_iter = DataLoader(test_data, batch_size=self.batch_size,
                               shuffle=False, collate_fn=self.generate_batch)
        if only_test:
            return test_iter
        train_data, max_sen_len = self.data_process(filepath=train_file_path,
                                                    postfix=postfix)  # 得到处理好的所有样本
        if self.max_sen_len == 'same':
            self.max_sen_len = max_sen_len
        val_data, _ = self.data_process(filepath=val_file_path,
                                        postfix=postfix)
        train_iter = DataLoader(train_data, batch_size=self.batch_size,  # 构造DataLoader
                                shuffle=self.is_sample_shuffle, collate_fn=self.generate_batch)
        val_iter = DataLoader(val_data, batch_size=self.batch_size,
                              shuffle=False, collate_fn=self.generate_batch)
        return train_iter, test_iter, val_iter

    def generate_batch(self, data_batch):
        batch_sentence, batch_label = [], []
        for (sen, label) in data_batch:  # 开始对一个batch中的每一个样本进行处理。
            batch_sentence.append(sen)
            batch_label.append(label)
        batch_sentence = pad_sequence(batch_sentence,  # [batch_size,max_len]
                                      padding_value=self.PAD_IDX,
                                      batch_first=False,
                                      max_len=self.max_sen_len)
        batch_label = torch.tensor(batch_label, dtype=torch.long)
        return batch_sentence, batch_label


class LoadPairSentenceClassificationDataset(LoadSingleSentenceClassificationDataset):
    def __init__(self, **kwargs):
        super(LoadPairSentenceClassificationDataset, self).__init__(**kwargs)
        pass

    @cache
    def data_process(self, filepath, postfix='cache'):
        """
        将每一句话中的每一个词根据字典转换成索引的形式,同时返回所有样本中最长样本的长度
        :param filepath: 数据集路径
        :return:
        """
        raw_iter = open(filepath).readlines()
        data = []
        max_len = 0
        for raw in tqdm(raw_iter, ncols=80):
            line = raw.rstrip("\n").split(self.split_sep)
            s1, s2, l = line[0], line[1], line[2]
            token1 = [self.vocab[token] for token in self.tokenizer(s1)]
            token2 = [self.vocab[token] for token in self.tokenizer(s2)]
            tmp = [self.CLS_IDX] + token1 + [self.SEP_IDX] + token2
            if len(tmp) > self.max_position_embeddings - 1:
                tmp = tmp[:self.max_position_embeddings - 1]  # BERT预训练模型只取前512个字符
            tmp += [self.SEP_IDX]
            seg1 = [0] * (len(token1) + 2)  # 2 表示[CLS]和中间的[SEP]这两个字符
            seg2 = [1] * (len(tmp) - len(seg1))
            segs = torch.tensor(seg1 + seg2, dtype=torch.long)
            tensor_ = torch.tensor(tmp, dtype=torch.long)
            l = torch.tensor(int(l), dtype=torch.long)
            max_len = max(max_len, tensor_.size(0))
            data.append((tensor_, segs, l))
        return data, max_len

    def generate_batch(self, data_batch):
        batch_sentence, batch_seg, batch_label = [], [], []
        for (sen, seg, label) in data_batch:  # 开始对一个batch中的每一个样本进行处理。
            batch_sentence.append(sen)
            batch_seg.append((seg))
            batch_label.append(label)
        batch_sentence = pad_sequence(batch_sentence,  # [batch_size,max_len]
                                      padding_value=self.PAD_IDX,
                                      batch_first=False,
                                      max_len=self.max_sen_len)  # [max_len,batch_size]
        batch_seg = pad_sequence(batch_seg,  # [batch_size,max_len]
                                 padding_value=self.PAD_IDX,
                                 batch_first=False,
                                 max_len=self.max_sen_len)  # [max_len, batch_size]
        batch_label = torch.tensor(batch_label, dtype=torch.long)
        return batch_sentence, batch_seg, batch_label

模型训练

TaskForPairSentenceClassification的模块来完成分类模型的微调训练任务。

首先,我们需要定义一个ModelConfig类来对分类模型中的超参数进行管理,代码如下所示:

class BertConfig(object):
    """Configuration for `BertModel`."""

    def __init__(self,
                 vocab_size=21128,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 pad_token_id=0,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
                 initializer_range=0.02):
        """Constructs BertConfig.
        Args:
          vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
          hidden_size: Size of the encoder layers and the pooler layer.
          num_hidden_layers: Number of hidden layers in the Transformer encoder.
          num_attention_heads: Number of attention heads for each attention layer in
            the Transformer encoder.
          intermediate_size: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
          hidden_act: The non-linear activation function (function or string) in the
            encoder and pooler.
          hidden_dropout_prob: The dropout probability for all fully connected
            layers in the embeddings, encoder, and pooler.
          attention_probs_dropout_prob: The dropout ratio for the attention
            probabilities.
          max_position_embeddings: The maximum sequence length that this model might
            ever be used with. Typically set this to something large just in case
            (e.g., 512 or 1024 or 2048).
          type_vocab_size: The vocabulary size of the `token_type_ids` passed into
            `BertModel`.
          initializer_range: The stdev of the truncated_normal_initializer for
            initializing all weight matrices.
        """
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.pad_token_id = pad_token_id
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size=None)
        for (key, value) in six.iteritems(json_object):
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        """从json配置文件读取配置信息"""
        with open(json_file, 'r') as reader:
            text = reader.read()
        logging.info(f"成功导入BERT配置文件 {json_file}")
        return cls.from_dict(json.loads(text))

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

最后,我们只需要再定义一个train()函数来完成模型的训练即可,代码如下:

def train(config):
    model = BertForSentenceClassification(config,
                                          config.pretrained_model_dir)
    model_save_path = os.path.join(config.model_save_dir, 'model.pt')
    if os.path.exists(model_save_path):
        loaded_paras = torch.load(model_save_path)
        model.load_state_dict(loaded_paras)
        logging.info("## 成功载入已有模型,进行追加训练......")
    model = model.to(config.device)
    optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)

    '''
    Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
    '''
    model, optimizer = ipex.optimize(model, optimizer=optimizer)

    model.train()
    bert_tokenize = BertTokenizer.from_pretrained(
        model_config.pretrained_model_dir).tokenize
    data_loader = LoadPairSentenceClassificationDataset(
        vocab_path=config.vocab_path,
        tokenizer=bert_tokenize,
        batch_size=config.batch_size,
        max_sen_len=config.max_sen_len,
        split_sep=config.split_sep,
        max_position_embeddings=config.max_position_embeddings,
        pad_index=config.pad_token_id)
    train_iter, test_iter, val_iter = \
        data_loader.load_train_val_test_data(config.train_file_path,
                                             config.val_file_path,
                                             config.test_file_path)
    lr_scheduler = get_scheduler(name='linear',
                                 optimizer=optimizer,
                                 num_warmup_steps=int(len(train_iter) * 0),
                                 num_training_steps=int(config.epochs * len(train_iter)))
    max_acc = 0
    for epoch in range(config.epochs):
        losses = 0
        start_time = time.time()
        for idx, (sample, seg, label) in enumerate(train_iter):
            sample = sample.to(config.device)  # [src_len, batch_size]
            label = label.to(config.device)
            seg = seg.to(config.device)
            padding_mask = (sample == data_loader.PAD_IDX).transpose(0, 1)
            loss, logits = model(
                input_ids=sample,
                attention_mask=padding_mask,
                token_type_ids=seg,
                position_ids=None,
                labels=label)
            optimizer.zero_grad()
            loss.backward()
            lr_scheduler.step()
            optimizer.step()
            losses += loss.item()
            acc = (logits.argmax(1) == label).float().mean()
            if idx % 10 == 0:
                logging.info(f"Epoch: {epoch}, Batch[{idx}/{len(train_iter)}], "
                             f"Train loss :{loss.item():.3f}, Train acc: {acc:.3f}")
        end_time = time.time()
        train_loss = losses / len(train_iter)
        logging.info(f"Epoch: {epoch}, Train loss: "
                     f"{train_loss:.3f}, Epoch time = {(end_time - start_time):.3f}s")
        if (epoch + 1) % config.model_val_per_epoch == 0:
            acc = evaluate(val_iter, model, config.device, data_loader.PAD_IDX)
            logging.info(f"Accuracy on val {acc:.3f}")
            if acc > max_acc:
                max_acc = acc
                torch.save(model.state_dict(), model_save_path)

结果

[oneAPI] 基于BERT预训练模型的英文文本蕴含任务,python杂记,oneapi,bert,人工智能

参考资料

基于BERT预训练模型的英文文本蕴含任务: https://www.ylkz.life/deeplearning/p10407402/文章来源地址https://www.toymoban.com/news/detail-666282.html

到了这里,关于[oneAPI] 基于BERT预训练模型的英文文本蕴含任务的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用Bert预训练模型处理序列推荐任务

    最近的工作有涉及该任务,整理一下思路以及代码细节。 总体来说思路就是首先用预训练的bert模型,在训练集的序列上进行CLS任务。对序列内容(这里默认是token id的sequence)以0.3左右的概率进行随机mask,然后将相应sequence的attention mask(原来决定padding index)和label(也就是

    2024年02月14日
    浏览(36)
  • NLP文本匹配任务Text Matching [有监督训练]:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)项目实践

    本项目对3种常用的文本匹配的方法进行实现:PointWise(单塔)、DSSM(双塔)、Sentence BERT(双塔)。 文本匹配(Text Matching)是 NLP 下的一个分支,通常用于计算两个句子之间的相似程度,在推荐、推理等场景下都有着重要的作用。 举例来讲,今天我们有一堆评论数据,我们

    2024年02月12日
    浏览(37)
  • 自然语言处理实战项目8- BERT模型的搭建,训练BERT实现实体抽取识别的任务

    大家好,我是微学AI,今天给大家介绍一下自然语言处理实战项目8- BERT模型的搭建,训练BERT实现实体抽取识别的任务。BERT模型是一种用于自然语言处理的深度学习模型,它可以通过训练来理解单词之间的上下文关系,从而为下游任务提供高质量的语言表示。它的结构是由多

    2024年02月07日
    浏览(56)
  • 基于BERT-PGN模型的中文新闻文本自动摘要生成——文本摘要生成(论文研读)

    基于BERT-PGN模型的中文新闻文本自动摘要生成(2020.07.08) 针对文本自动摘要任务中生成式摘要模型对句子的上下文理解不够充分、生成内容重复的问题,基于BERT 和指针生成网络(PGN),提出了一种面向中文新闻文本的生成式摘要模型——BERT-指针生成网络(BERTPGN)。首先,

    2024年02月01日
    浏览(52)
  • Bert + 架构解决文本分类任务

    ![在这里插入图片描述] 一般任务 = 预训练 + 架构 + 应用 在本文中,我们将用 BERT + 架构去实现文本分类 任务 未使用BERT架构,使用基本的模型架构解决文本分类任务的可见这篇文章 中文文本分类,基本模型的pytoch实现 - 影子的文章 - 知乎 https://zhuanlan.zhihu.com/p/577121058 BERT 最

    2023年04月13日
    浏览(37)
  • 自然语言处理(NLP)一直是人工智能领域的一项重要任务,其涉及到从文本中提取特征、组织数据、训练模型等诸多复杂任务。如何有效地进行文本理解和分析?

    作者:禅与计算机程序设计艺术 自然语言处理(NLP)一直是人工智能领域的一项重要任务,其涉及到从文本中提取特征、组织数据、训练模型等诸多复杂任务。如何有效地进行文本理解和分析,成为一个重要研究课题。近年来,随着计算能力的提升和硬件性能的增强,大规模

    2024年02月09日
    浏览(66)
  • 基于Bert+Attention+LSTM智能校园知识图谱问答推荐系统——NLP自然语言处理算法应用(含Python全部工程源码及训练模型)+数据集

    这个项目充分利用了Google的Bert模型,这是一种基于Attention的大规模语料预训练模型,以及LSTM命名实体识别网络。项目的目标是设计一套通用的问答系统处理逻辑,以实现智能问答任务。 首先,我们采用了Bert模型,这是一种在自然语言处理领域非常强大的预训练模型。它具备

    2024年02月09日
    浏览(63)
  • 文本情感分类模型之BERT

    BERT是google开源的一种自然语言处理领域的经典模型,全称是 B idirectional  E ncoder  R epresentations from  T ransformers 。它使用多头注意力和位置嵌入,来替换不易并行的循环神经网络。它的出现一举打破自然语言处理领域11个不同问题的记录,直接将自然语言处理推动到了一个新的

    2024年02月03日
    浏览(39)
  • NeuralNLP-NeuralClassifier的使用记录(一),训练预测自己的【英文文本多分类】

    NeuralNLP-NeuralClassifier是腾讯开发的一个多层多分类应用工具,支持的任务包括,文本分类中的二分类、多分类、多标签,以及层次多标签分类。支持的文本编码模型包括 FastText, TextCNN, TextRNN, RCNN, VDCNN等。这篇博客将介绍如何使用这个项目实现文本的多标签多分类任务。 这里记

    2024年02月12日
    浏览(33)
  • BERT数据处理,模型,预训练

    首先读取文本,每个文本必须包含两个以上句子(为了第二个预训练任务:判断两个句子,是否连续)。paragraphs 其中一部分结果如下所示 上述已经将数据处理完,最后看一下处理后的例子: 随后就是把处理好的数据,送入bert中。在 BERTEncoder 中,执行如下代码: 将编码完后

    2024年02月13日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包