AMBA总线协议(8)——AHB(六):分割传输

这篇具有很好参考价值的文章主要介绍了AMBA总线协议(8)——AHB(六):分割传输。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、前言

        在之前的文章中,我们重点介绍了AHB传输的仲裁,首先介绍了仲裁相关的信号,然后分别介绍了请求总线访问,授权总线访问,猝发提前终止,锁定传输和默认主机总线,在本文中我们将继续介绍AHB的分割传输。

系列文章合集:AMBA总线协议(0)——目录与传送门

二、AHB分割传输

        分割传输通过根据从机的响应操作来分离(或者分块)主机操作,以给从机提供地址和合适的数据,提高了总线的总体使用率。
        当传输产生时,如果从机认为传输的执行将占据大量的时钟周期,那么从机能够决定发出一个 SPLIT 响应。该信号提示仲裁器尝试这次传输的主机不应该被授予访问总线,直到从机表示它准备好了完成传输时。因此,仲裁器负责监视响应信号,并且在内部屏蔽已经是 SPLIT 传输主机的任何请求。
        在传输的地址周期,仲裁器在 HMASTER[3:0]产生一个标记,或者总线主机序号,以表示正在执行传输的主机。任何一个发出 SPLIT 响应的从机必须表示它有能力完成这个传输,并且通过记录 HMASTER[3:0]信号上的主机序号来实现。
        之后,当从机能够完成传输时,它就根据主机序号在在从机到主机的 HSPLITx[15:0]信号上生效适当的位。然后仲裁器使用这个信息来解除来自主机请求信号的屏蔽,并且主机将被及时授予访问总线以重试传输。仲裁器在每个时钟周期采样 HSPLITx 总线,因此,从机只需要生效适当的位一个周期,以便仲裁器能够识别。
        如果系统中有多个具有 SPLIT 能力的从机,那么每个从机的 HSPLITx 总线可以逻辑或在一起以提供给仲裁器单个 HSPLIT 总线。大多数系统中并没有用到最大 16 个总线主机的能力,因此,仲裁器仅要求一个位数和总主机数量一样的 HSPLIT 总线。但是,建议所有具有 SPLIT 能力的从机被设计成支持高达16个主机。

1、分割传输顺序

SPLIT 传输的基本步骤如下:
        (1) 主机以和其他传输一样的方式发起传输并发出地址和控制信息;
        (2) 如果从机能够立刻提供数据,那么它可以马上提供数据。如果从机确认获取数据可能会占据较多的周期,那么它给出一个 SPLIT 传输响应;每次传输中仲裁器广播一个序号或者标记,表示哪个主机正在使用总线。从机必须记录该序号,以便用来在之后的一段时间重新发起传输;
        (3) 仲裁器授予其他主机使用总线,并且 SPLIT 响应的动作允许主机移交总线。如果所有其他主机也接收到一个 SPLIT 响应,那么默认主机将被授予总线;
        (4) 当从机准备完成传输,那么它生效 HSPLITx 总线中的适当位给仲裁器以指示哪个主机应该被重新授予访问总线;
        (5) 仲裁器每个时钟周期监视 HSPLITx 信号,并且当 HSPLITx 中的任何一位被生效,仲裁器将恢复对应主机的优先级;
        (6) 最后仲裁器将授予(SPLIT 的)主机总线,因此主机能重新尝试传输。如果一个优先级更高的主机正在使用总线的话,这可能不会立刻发生;
        (7) 当传输终于开始后从机以一个 OKAY 传输响应来结束(传输)。

2、多个分割传输

        总线协议只允许每个总线主机有一个未完成的处理。如果任何主机模块能够处理多于一个未完成的处理,那么它需要为能够处理的每个未完成处理设置一个额外的请求和授予信号。在协议级上一个信号模块可以表现为许多不同总线主机,每个主机只能有一个未完成的处理。
        然而,可能一个有 SPLIT 能力的从机会接收比它能并发处理的(传输)还要多的传输请求。如果这种情况发生,那么从机可以不用记录对应传输的地址和控制信息,而仅需要记录主机序号就发出 SPLIT 响应。之后从机可以通过生效 HSPLITx 总线中适当的位给之前被给出SPLIT 响应的所有主机来表示它能处理另外一个传输,但是从机没有记录地址和控制信息。之后仲裁器能够重新授予这些主机访问总线,并且它们将重试传输,给出从机要求的地址和控制信息。这表示一个主机可以在它最终完成它要求的传输之前被多次授予总线。

3、预防死锁

        SPLIT 和 RETRY 传输响应都必须在使用中注意预防总线死锁。单个传输决不会锁定AHB,因为每个从机必须被设计成能在预先确定的周期数内完成传输。但是,如果多个不同主机试图访问同一个从机,从机发出 SPLIT 或者 RETRY 响应以表示从机不能处理,那么就有可能发生死锁。

(1)分割传输

        从机可以发出 SPLIT 传输响应,通过确保从机能够承受系统中每个主机(最多 16 个)的单个请求来预防死锁。从机并不需要存储每个主机的地址和控制信息,它只需要简单的记录传输请求已经被处理和 SPLIT 响应已经发出的事实即可。最后所有主机将处在低优先级,然后从机可以有次序的来处理这些请求,指示仲裁器正在服务于哪个请求,因而确保了所有请求最终都被服务。

        当从机有许多未完成的请求时,它可能以任何顺序(随机的)来选择处理这些请求,尽管从机需要注意锁定传输必须在任何其他传输继续之前完成。

        从机使用 SPLIT 响应而不用锁存地址和控制信息显得非常合法(合适)。从机仅需要记录特定主机做出的传输尝试并且稍后的时间段从机通过指示自己已经准备好完成传输就能获取地址和控制信息。主机将被授予总线并将重新广播传输,允许从机锁存地址和控制信息,并且立刻应答数据,或者发出另外一个 SPLIT 响应(如果还需要额外的一些周期的话)。

        理想情况下,从机不应该有多于它能支持的未完成传输,但是要求支持这种机制以防止总线死锁。

(2)重试传输

        发出 SPLIT 响应的从机一次只能被一个主机访问。在总线协议中并没有强制,而在系统体系结构中应该确保这一点。大多数情况下,发出 RETRY 响应的从机必须是一次只能被一个主机访问的外设,因此这会在一些更高级协议中得到保证。
        硬件保护和多主机访问 RETRY(响应)的从机相违背并不是协议中的要求,但是可能会在下文描述的设计中得到执行。仅有的总线级要求是从机必须在预先确定的时钟周期内驱动 HREADY 为高。如果要求硬件保护,那么这可以被 RETRY(响应)的从机自己执行。当一个从机发出一个 RETRY 信号后,它能够采样主机序号。在这之后和传输最终完成之前, RETRY 的从机可以检查做出的每次传输尝试以确保主机序号是相同的。如果从机发现主机号不一致,那么它可以选择下列的行动方式:
  • 一个错误响应;
  • 一个信号给仲裁器;
  • 一个系统级中断;
  • 一个完全的系统复位

4、分割传输的总线移交

        协议要求主机在接收到一个SPLIT或者RETRY响应后立刻执行一个空闲传输,以允许总线转移给另外一个主机。下图表示了发生一个分块(SPLIT)传输的顺序事件:

AMBA总线协议(8)——AHB(六):分割传输,AMBA总线协议,fpga开发,arm开发,fpga,硬件架构,arm文章来源地址https://www.toymoban.com/news/detail-666298.html

需要注意以下的要点:
        (1)传输的地址在时间 T1 之后出现在总线上。在时钟沿 T2 和 T3 后从机返回两个周期的 SPLIT 响应;
        (2)在第一个响应周期的末尾,也就是 T3,主机能够检测到传输将会被分块因此(主
机)改变接下来的传输控制信号以表示一个空闲传输;
        (3)同样也在时间 T3 处仲裁器采样响应信号并确定传输已经被分块。之后仲裁器可以调整仲裁优先权并且在接下来的周期改变授予信号,这样新的主机能够在时间 T4后被授予地址总线;
        (4)新主机可以保证立刻访问(总线)因为空闲传输总是在一个周期内完成。

三、小结

        在本文中我们讲述了AHB协议的分割传输机制,它使得从机可以决定一次传输是否继续进行,以防止传输的执行将占据大量的时钟周期,有效提高了总线的公平性与效率问题,在后续的文章中我们将一次性学习完AHB最后的内容,包括有复位,数据总线的位宽和接口设备等。

到了这里,关于AMBA总线协议(8)——AHB(六):分割传输的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【AMBA】AHB-Lite总线协议

    AHB-Lite的主要组成部分为: (1)Master (2)Slave (3)Address Decoder (4)slave-to-master multiplexor AHB-Lite的一次传输,信号时序分为两步: (1)Address Phase:Master发送地址和控制信号 (2)Data Phase:Master发送写数据/Slave发送读数据 其中,Address Phase不可主动被扩展,通常为一个cycl

    2024年02月07日
    浏览(31)
  • FPGA-AMBA协议、APB协议、AHB规范、AXI4协议规范概述及它们之间的关系

    笔记记录,AMBA协议、APB协议、AHB规范、AXI4协议规范概述,只是概述描述,具体详细的协议地址传输、数据传输等内容将在下一章节详细说明。 AMBA(Advanced Microcontroller Bus Architecture)是一种由ARM公司提出的处理器总线架构,它定义了处理器、内存和外设之间的通信标准 。

    2024年02月04日
    浏览(34)
  • <AMBA总线篇> AXI总线协议介绍

    目录 01 AXI协议简介 AXI协议特性 AXI协议传输特性 02 AXI协议架构 AXI协议架构 write transaction(写传输) read tramsaction(读传输) Interface and interconnect 典型的AXI系统拓扑 03 文章总结 大家好,这里是程序员 杰克 。一名平平无奇的嵌入式软件工程师。 对于学习Xilinx FPGA(ZYNQ)而言,官方提

    2024年02月10日
    浏览(43)
  • AMBA总线协议AXI——学习笔记

    2023.3.25 2023.4.23 AXI :高级可拓展接口 高性能、高带宽、低延迟 单向通道体系结构 独立的地址和数据通道 支持多项数据交换。通过 并行执行burst操作 ,极大地提高了数据吞吐能力。 AXI4 :高性能内存映射需求(如读写DDR、使用BRAM控制器读写BRAM等),为了区别,有时候也叫这

    2023年04月23日
    浏览(49)
  • 【ARM AMBA5 CHI 入门 12 -- CHI 总线学习 】

    请阅读 【ARM AMBA 总线 文章专栏导读】

    2024年02月10日
    浏览(45)
  • 【ARM AMBA AXI 入门 11 - AXI 总线 AWCACHE 和 ARCACHE 介绍】

    请阅读 【ARM AMBA AXI 总线 文章专栏导读】 转自:https:

    2024年02月09日
    浏览(51)
  • 「FPGA项目」—— 基于AMBA总线的流水灯控制系统

    本文将介绍一个完全用Verilog HDL手写的AMBA片上系统, 项目的主题是设计一个 基于AMBA总线的流水灯控制系统 , 项目中所有数字逻辑电路部分都不会通过调用成熟IP核的方式来实现,而是通过Verilog进行RTL设计, 然后利用Vivado平台对RTL模型进行仿真、综合与布线, 最后在FPGA开

    2023年04月25日
    浏览(47)
  • 【ARM AMBA AXI 入门 9 - AXI 总线 AxPROT 与安全之间的关系 】

    请阅读 【ARM AMBA AXI 总线 文章专栏导读】 上篇文章:ARM AMBA AXI 入门 8 - AXI 协议中 RID/ARID/AWID/WID 信号 ARMv8 架构中的AXI(Advanced eXtensible Interface)总线与NS(Non-Secure)位密切相关。NS位是指在ARM TrustZone安全扩展中定义的一种状态,用于区分安全和非安全的处理器执行环境。AXI总

    2024年02月11日
    浏览(43)
  • 利用AHB-Lite总线实现ARM Cortex-M0基础的SoC系统;如何设计一个SoC系统;AHB-Lite;ARM Cortex-M0;SoC;

      本文讨论了SoC系统的架构设计,包括处理器核心、内存以及其他外设的互连,并详细描述了如何通过AHB-Lite总线实现高效的数据传输。AHB-Lite总线是一种简化版本的AHB总线。同时,阐述了利用寄存器映射以及其他硬件资源与软件接口的设计方法,以满足SoC系统的功能需求。

    2024年02月06日
    浏览(63)
  • 【ARM AMBA AXI 入门 10 - AXI 总线 DATA信号与 STRB 信号之间的关系 】

    请阅读 【ARM AMBA AXI 总线 文章专栏导读】 AXI总线是ARM公司设计的高性能处理器接口,其中 STRB 和 DATA 信号在AXI协议中有特殊的含义和关系。 DATA信号 :在AXI中,DATA信号用于在读写操作中传输实际的数据。数据的大小可以根据AXI接口的位宽来变化,例如 32 位、 64 位或 128 位等

    2024年02月11日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包