Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询

这篇具有很好参考价值的文章主要介绍了Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、前言

之前我们学习了布尔查询,知道了filter查询只在乎查询条件和文档的匹配程度,但不会根据匹配程度对文档进行打分,而对于must、should这两个布尔查询会对文档进行打分,那如果我想在查询的时候同时不去在乎文档的打分(对搜索结果的排序),只想过滤文本字段是否包含这个词,除了filter查询,我们还会介绍Constant Score查询。相反,如果想干预这个分数,我们会使用Function Score查询,这些都会在后面介绍到。

二、Constant Score查询

如果不想让检索词频率TF(Term Frequency)对搜索结果排序有影响,只想过滤某个文本字段是否包含某个词,可以使用Constant Score将查询语句包装起来。
假设需要查询city字段是否包含关键词“上海”的酒店,则请求的DSL如下:

POST /hotel/_search
{
  "query": {
    "constant_score": {    //满足条件即打分为1(默认值是1)
      "filter": {
        "term": {   //term查询city中是上海的城市
           "city": "上海"
        }
      }
    }
  }
}

查询结果如下:

{
  ...
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 1.0,
    "hits" : [
      {
        "_index" : "hotel",
        "_type" : "_doc",
        "_id" : "004",
        "_score" : 1.0,
        "_source" : {
          "title" : "京盛集团酒店",
          "city" : "上海",
          "price" : "800.00",
          "create_time" : "2021-05-29 21:35:00",
          "amenities" : "浴池(假日需预订),室内游泳池,普通停车场/充电停车场",
          "full_room" : true,
          "location" : {
            "lat" : 36.940243,
            "lon" : 120.394
          },
          "praise" : 100
        }
      },
      {
        "_index" : "hotel",
        "_type" : "_doc",
        "_id" : "006",
        "_score" : 1.0,
        "_source" : {
          "title" : "京盛集团精选酒店",
          "city" : "上海",
          "price" : "500.00",
          "create_time" : "2022-01-29 22:50:00",
          "full_room" : true,
          "location" : {
            "lat" : 40.918229,
            "lon" : 118.422011
          },
          "praise" : 20
        }
      }
    ]
  }
}

通过结果可以看到,使用Constant Score搜索时,命中的酒店文档对应的city字段都包含“上海”一词。但是不论该词在文档中出现多少次,这些文档的得分都是一样的1.0.
PS:很多人可能会把constant_score查询中的filter和布尔查询的filter搞混,constant_score中的filter可以把它想象成普通的query,它后面接的就是各种各样的查询子句。如term,terms,exists,bool等等。
比如我想同时使用must查询创建时间大于等于2022-01-29 22:50:00的hotel且不在乎打分,那么可以使用下面的DSL:

POST /hotel/_search
{
  "query": {
    "constant_score": {
      "filter": {
        "bool": {
          "must": [
        {
          "range": {
            "create_time": {
              "gte": "2022-01-29 22:50:00"
            }
          }
        }
      ]
        }
      }
    }
  }
}

在Constant Score搜索中,参数boost可以控制命中文档的得分,默认值都是1.0,以下为更改boost参数为2.0的例子:

POST /hotel/_search
{
  "query": {
    "constant_score": {
      "boost":2.0,
      "filter": {
        "term": {
           "city": "上海"
        }
      }
    }
  }
}

查询结果如下:

{
  ...
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 2.0,
    "hits" : [
      {
        "_index" : "hotel",
        "_type" : "_doc",
        "_id" : "004",
        "_score" : 2.0,
        "_source" : {
          "title" : "京盛集团酒店",
          "city" : "上海",
          "price" : "800.00",
          "create_time" : "2021-05-29 21:35:00",
          "amenities" : "浴池(假日需预订),室内游泳池,普通停车场/充电停车场",
          "full_room" : true,
          "location" : {
            "lat" : 36.940243,
            "lon" : 120.394
          },
          "praise" : 100
        }
      },
      {
        "_index" : "hotel",
        "_type" : "_doc",
        "_id" : "006",
        "_score" : 2.0,
        "_source" : {
          "title" : "京盛集团精选酒店",
          "city" : "上海",
          "price" : "500.00",
          "create_time" : "2022-01-29 22:50:00",
          "full_room" : true,
          "location" : {
            "lat" : 40.918229,
            "lon" : 118.422011
          },
          "praise" : 20
        }
      }
    ]
  }
}

根据搜索结果可以看到,设定Boost值为2.0后,所有的命中的文档得分都为2.0。
然后对于Constant Score的效率问题,我们拿它和上一节讲到的filter查询做一个对比:

  1. Constant Score查询实际上就是一个没有分值函数的查询,它会将所有匹配文档的分值设置为一个常量。这种查询不需要计算每个匹配文档的相关度,所以效率会比普通查询高
  2. 但是Constant Score查询还需要执行查询本身,比如匹配查询条件、过滤文档等步骤。而filter查询仅仅过滤文档,不计算分值,所以整体效率比Constant Score查询更高。
  3. Constant Score查询不会像filter查询那样缓存过滤结果。因为Constant Score查询还需要计算每个匹配文档的分值,而这一步不受过滤结果缓存的影响。
  4. 所以总的来说,在效率方面: filter查询 > Constant Score查询 > 普通查询

在java客户端上构建Constant Score搜索时,可以使用ConstantScoreQueryBuilder类的实例进行构建,它接收一个QueryBuilder参数,即可以接收termQueryBuilder,termsQueryBuilder,boolQueryBuilder等等,和之前的DSL是一样的,那么比如我们查询一个城市是上海或者北京的酒店,代码如下:
Service层,getQueryResult()可以看往期的博客,有具体的方法实现:

	public List<Hotel> constantScore(HotelDocRequest hotelDocRequest) throws IOException {
		//新建搜索请求
		String indexName = getNotNullIndexName(hotelDocRequest);
		SearchRequest searchRequest = new SearchRequest(indexName);
		SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
		TermQueryBuilder termQueryBuilder1 = QueryBuilders.termQuery("city", "北京");
		TermQueryBuilder termQueryBuilder2 = QueryBuilders.termQuery("city", "上海");
		BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery();
		boolQueryBuilder.should(termQueryBuilder1).should(termQueryBuilder2);
		//构建ConstantScoreBuilder
		ConstantScoreQueryBuilder constantScoreQueryBuilder = new ConstantScoreQueryBuilder(boolQueryBuilder);
		//设置固定分数2.0
		constantScoreQueryBuilder.boost(2.0f);
		searchSourceBuilder.query(constantScoreQueryBuilder);
		searchRequest.source(searchSourceBuilder);
		return getQueryResult(searchRequest);
	}

Controller层:

	@PostMapping("/query/constant_score")
	public FoundationResponse<List<Hotel>> constantScoreQuery(@RequestBody HotelDocRequest hotelDocRequest) {
		try {
			List<Hotel> hotelList = esQueryService.constantScore(hotelDocRequest);
			if (CollUtil.isNotEmpty(hotelList)) {
				return FoundationResponse.success(hotelList);
			} else {
				return FoundationResponse.error(100,"no data");
			}
		} catch (IOException e) {
			log.warn("搜索发生异常,原因为:{}", e.getMessage());
			return FoundationResponse.error(100, e.getMessage());
		} catch (Exception e) {
			log.error("服务发生异常,原因为:{}", e.getMessage());
			return FoundationResponse.error(100, e.getMessage());
		}
	}

Postman实现:
Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询,elasticsearch,elasticsearch,java,spring boot,搜索引擎

三、Function Score查询

当你使用ES进行搜索时,命中的文档默认按照相关度进行排序,有些场景下用户需要干预该“相关度”,此时就可以使用Function Score查询。使用时,用户必须定义一个查询以及一个或多个函数,这些函数为每一个文档计算一个新分数
它允许每个主查询query匹配的文档应用加强函数,以达到改变原始查询评分_score的目的

3.1、function_score 查询模板

function_score 查询模板可以分为两类,分别为单个加强函数的查询和多个加强函数的查询。
单个加强函数的查询模板

{
  "query": {
    "function_score": {
      "query": {.....}, //  主查询,查询完后会有一个 _score 评分
      "field_value_factor": {...}, //  在 _score 的基础上进行强化评分
      "boost_mode": "multiply", //  指定用哪种方式结合 _score 和 强化 score
      "max_boost": 1.5 //  限制强化 score 的最高分,但是不会限制 _score
    }
  }
}

多个加强函数的查询模板

{
  "query": {
    "function_score": {
      "query": {.....},
      "functions": [   //  可以有多个加强函数(或是 filter+加强函数),每一个加强函数会产生一个加强 score
        { "field_value_factor": ... },
        { "gauss": ... },
        { "filter": {...}, "weight": ... }
      ],
      "score_mode": "sum", //  决定加强 score 们如何整合
      "boost_mode": "multiply" //  决定最后的 functions 中 score 和 query score 的结合方式
    }
  }
}

3.2、function_score 参数

强化 _score 计算的函数
function_score 提供了几种内置加强 _score 计算的函数功能:

  • weight:设置一个简单而不被规范化的权重提升值。

weight 加强函数和 boost 参数比较类似,可以用于任何查询,不过有一点差别是 weight 不会被 Lucene 规范化(normalize)成难以理解的浮点数,而是直接被应用。
例如,当 weight 为 2 时,最终得分为 new_score = 2 * _score

POST /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "term": {
          "city": {
            "value": "上海"
          }
        }
      },
     "weight":2
    }
  }
}

输出后可以对比一下不加weight的默认分数,基本分数都翻了2倍

  • field_value_factor:指定文档中某个字段的值结合 _score 改变分数

属性如下:
field指定字段名
factor对字段值进行预处理,乘以(或者加,取决于boost_mode)指定的数值(默认为1)
modifier:将字段值进行加工,有以下的几个选项:

  1. none:不处理
  2. log:计算对数
  3. log1p:先将字段值+1,再计算对数
  4. log2p:先将字段值+2,再计算对数
  5. ln:计算自然对数
  6. ln1p:先将字段值+1,再计算自然对数
  7. ln2p:先将字段值+2,再计算自然对数
  8. square:计算平方
  9. sqrt:计算平方根
  10. reciprocal:计算倒数
{
  "query": {
    "function_score": {
      "query": {.....},
      "field_value_factor": {
        "field": "price",
        "modifier": "none",
        "factor": 1.2
      },
      "boost_mode": "multiply", 
      "max_boost": 1.5
    }
  }
}

调整后的 function 分数公式为,factor * doc['price'].value;如果boos_mode设定为sum,那么分数公式为factor + doc['price'].value

例如我们让最终的分数以price字段进行增强,在原分数基础上*1.2

POST /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "term": {
          "city": {
            "value": "上海"
          }
        }
      },
      "field_value_factor": {
        "field":"price",
        "factor": 1.2
      },
      "boost_mode": "multiply"
    }
  }
}

再例如我想对字段值先乘1.2再+1再取对数,那么DSL如下:

POST /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "term": {
          "city": {
            "value": "上海"
          }
        }
      },
      "field_value_factor": {
        "field":"price",
        "modifier": "ln1p",
        "missing":1.0,
        "factor": 1.2
      },
      "boost_mode": "multiply"
    }
  }
}

Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询,elasticsearch,elasticsearch,java,spring boot,搜索引擎
function 分数为,ln1p(1.2 * doc['view_cnt'].value)如果指定字段缺失用 missing 对应的值,至于和匹配的相关性分数 _score 如何结合需要下面的 boost_mode 参数来决定

  • random_score使用一致性随机分值计算来对每个用户采用不同的结果排序方式,对相同用户仍然使用相同的排序方式其本质上用的是seed 种子参数,用户相关的 id 与 seed 构造映射关系,就可千人千面的效果,seed 不同排序结果也不同。具体示例如下:
    ①字段值相同,例如通过full_room,由上面查询结果可知,两个结果的full_room相同,此时使用random_score,两个的排序结果仍然是一致的:
POST /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "term": {
          "city": {
            "value": "上海"
          }
        }
      },
      "random_score": {
        "field":"full_room",
        "seed": 10
      },
      "boost_mode": "multiply"
    }
  }
}

Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询,elasticsearch,elasticsearch,java,spring boot,搜索引擎
如果对price进行随机加强,那么排序就会不一样:

POST /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "term": {
          "city": {
            "value": "上海"
          }
        }
      },
      "random_score": {
        "field":"price",
        "seed": 10
      },
      "boost_mode": "multiply"
    }
  }
}

Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询,elasticsearch,elasticsearch,java,spring boot,搜索引擎
我们可以调整seed,就会发现排序不一样。

  • 衰减函数(decay function):es 内置了三种衰减函数,分别是 linear、exp 和 gauss;

三种衰减函数的差别只在于衰减曲线的形状,在 DSL 的语法上的用法完全一样;
linear : 线性函数是条直线,一旦直线与横轴0香蕉,所有其他值的评分都是0
exp : 指数函数是先剧烈衰减然后变缓
guass(最常用) : 高斯函数则是钟形的,他的衰减速率是先缓慢,然后变快,最后又放缓
Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询,elasticsearch,elasticsearch,java,spring boot,搜索引擎

origin:中心点 或字段可能的最佳值,落在原点 origin 上的文档评分 _score 为满分 1.0 。

scale:衰减率,即一个文档从原点 origin 下落时,评分 _score 改变的速度。(例如,每 £10 欧元或每 100 米)。

decay:从原点 origin 衰减到 scale 所得的评分 _score ,默认值为 0.5 。

offset:以原点 origin 为中心点,为其设置一个非零的偏移量 offset 覆盖一个范围,而不只是单个原点。在范围 -offset <= origin <= +offset 内的所有评分 _score 都是 1.0 。不设置默认是0

POST /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "term": {
          "city": {
            "value": "上海"
          }
        }
      },
      "gauss": {
        "price": {
              // 如果不设置offset,offset默认为0  公式 : origin-offset <= value <= origin+offset
             // 范围在800-0 <= value <= 800+0的文档的评分_score都是满分1.0
            //而在此范围之外,评分会开始衰减,衰减率由scale值(此处是300)和decay值(此处是0.2)决定
           // 也就是说,在origin + offset + scale或是origin - offset - scale的点上,得到的分数仅有decay分
          "origin": "800",
          "scale": "300",
          "decay": 0.2
        }
      }, 
      "boost_mode": "multiply"
    }
  }
}

Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询,elasticsearch,elasticsearch,java,spring boot,搜索引擎
对衰减函数感兴趣的小伙伴可以浏览这篇文章,讲的很详细,尤其是最后对于用户同时对于酒店的地理位置和价格去做一个筛选。

  • script_score:当需求超出以上范围时,可以用自定义脚本完全控制评分计算。

3.3、其它辅助函数

  • boost_mode 参数:决定 query 中的相关性分数和加强的函数分数的结合方式。

multiply默认的配置,两者分数相乘,new_score = _score * boost_score;
sum:两者相加,new_score = _score + boost_score;
min:取两者最小值,new_score = min(_score, boost_score);
max:取两者最大值,new_score = max(_score, boost_score);
replace:用 boost_score 替换 _score 值。有时候我们可以通过replace看具体的函数得分是多少,便于我们排查问题

  • score_mode 参数决定 functions 里面的强化 score 如何结合

function_score 先会执行 score_mode 的设置,即先整合所有的强化计算,再执行 boost_mode 的配置,就是将 query 相关性分数和整合强化分数的结合
multiply:默认的配置,多个强化分数相乘;
sum:多个强化分数相加;
min:取多个强化分数最小值;
max:取多个强化分数最大值;
avg:取多个强化分数平均值;
first:使用首个函数的结果作为最终结果。

  • max_boost:限制加强函数的最大效果,就是限制加强 score 最大能多少,但要注意不会限制 old_score。

如果加强 score 超过了 max_boost 限制的值,会把加强 score 的值设成 max_boost 的值
假设加强 score 是5,而 max_boost 是2,因为加强 score 超出了 max_boost 的限制,所以 max_boost 就会把加强 score 改为2。简单的说,就是 final_score = min(整合后的 score, max_boost)。

3.4、java实现

funtion_score的参数我们可以通过ScoreFunctionBuilders.xxx构筑
Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询,elasticsearch,elasticsearch,java,spring boot,搜索引擎
Service层实现:

	public List<Hotel> functionScoreScore(HotelDocRequest hotelDocRequest) throws IOException {
		//新建搜索请求
		String indexName = getNotNullIndexName(hotelDocRequest);
		SearchRequest searchRequest = new SearchRequest(indexName);
		SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
		TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("city", "上海");
		//构建FunctionScoreBuilder,比如这里构筑高斯函数(衰减函数)
		GaussDecayFunctionBuilder gaussDecayFunctionBuilder = ScoreFunctionBuilders.gaussDecayFunction(hotelDocRequest.getPropertiesName(), 800, 200, 0, 0.2);
		//构建Function Score查询
		FunctionScoreQueryBuilder functionScoreQueryBuilder = new FunctionScoreQueryBuilder(termQueryBuilder, gaussDecayFunctionBuilder).boostMode(CombineFunction.MULTIPLY);
		searchSourceBuilder.query(functionScoreQueryBuilder);
		searchRequest.source(searchSourceBuilder);
		return getQueryResult(searchRequest);
	}

controller层实现:

	@PostMapping("/query/function_score")
	public FoundationResponse<List<Hotel>> functionScoreQuery(@RequestBody HotelDocRequest hotelDocRequest) {
		try {
			List<Hotel> hotelList = esQueryService.functionScoreScore(hotelDocRequest);
			if (CollUtil.isNotEmpty(hotelList)) {
				return FoundationResponse.success(hotelList);
			} else {
				return FoundationResponse.error(100,"no data");
			}
		} catch (IOException e) {
			log.warn("搜索发生异常,原因为:{}", e.getMessage());
			return FoundationResponse.error(100, e.getMessage());
		} catch (Exception e) {
			log.error("服务发生异常,原因为:{}", e.getMessage());
			return FoundationResponse.error(100, e.getMessage());
		}
	}

postman实现截图:
Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询,elasticsearch,elasticsearch,java,spring boot,搜索引擎文章来源地址https://www.toymoban.com/news/detail-666826.html

到了这里,关于Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ES es Elasticsearch 十三 Java api 实现搜索 分页查询 复杂查询 过滤查询 ids查询 等

    目录 Java api 实现搜索 Pom.xml 建立链接 搜索全部记录 增加规则值查某些字段 搜索分页 全代码 Ids 搜索 搜索Match搜索 multi_match 搜索 多字段搜索 复杂查询 bool查询 filter  bool 复杂查询增加过滤器查询 复杂擦好像加排序 日志 思路 参考 api 写法 写Java代码 请求条件构建层次

    2024年02月04日
    浏览(56)
  • ElasticSearch系列 - SpringBoot整合ES之全文搜索匹配查询 match

    官方文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/index.html 权威指南:https://www.elastic.co/guide/cn/elasticsearch/guide/current/structured-search.html 1. 数据准备 官方测试数据下载地址:https://download.elastic.co/demos/kibana/gettingstarted/accounts.zip ,数据量很大,我们自己构造数据吧。 2. m

    2023年04月08日
    浏览(51)
  • Elasticsearch (ES) 搜索引擎: 搜索功能:搜索分页、搜索匹配、全文搜索、搜索建议、字段排序

    原文链接:https://xiets.blog.csdn.net/article/details/132348920 版权声明:原创文章禁止转载 专栏目录:Elasticsearch 专栏(总目录) ES 搜索 API 官网文档:Search APIs 先创建一个索引,并写入一些文档用于搜索示例: 写入一些文档示例: 官网API:The _source option 搜索结果中的文档数据封装

    2024年02月08日
    浏览(50)
  • Elasticsearch 查询之Function Score Query

    前言 ES 的主查询评分模式分为两种,是信息检索领域的重要算法: TF-IDF 算法 和 BM25 算法。 Elasticsearch 从版本 5.0 开始引入了 BM25 算法作为默认的文档评分(relevance scoring)算法。在此之前,Elasticsearch 使用的是 TF-IDF 算法作为默认的文档评分算法。从版本 5.0 起,BM25 算法取代

    2024年02月12日
    浏览(40)
  • 第七章-分布式搜索引擎-ES:全文查询、分词查询、精确查询、地理坐标查询、组合查询(bool、funtion_score)以及RestApi

    DSL查询分类 全文查询、分词查询、非分词查询、地理坐标查询、组合查询 match_all 查询所有,不需要查询条件,固定写法_search 第一个hits就是命中的数据 ,total就是条数,第二个hits是source嘞   全文检索查询 我们不要整多个字段查询,参与的字段越多,查询速度越慢,如果有

    2024年01月16日
    浏览(79)
  • Elasticsearch之文本搜索(十三)

            ES作为一款搜索引擎框架,文本搜索是其核心功能。ES在文本索引的建立和搜索过程中依赖两大组件,即Lucene和分析器。其中,Lucene负责进行倒排索引的物理构建,分析器负责在建立倒排索引前和搜索前对文本进行分词和语法处理。         为了完成对文本的快

    2024年02月07日
    浏览(34)
  • ElasticSearch[八]:自定义评分功能、使用场景讲解以及 function_score常用的字段解释

    基本介绍 ES 的使用中,ES 会对我们匹配文档进行相关度评分。但对于一些定制化的场景,默认评分规则满足不了我们的要求。这些定制化场景,ES 也是推出了自定义评分方式来进行支持。可以使用 ES 提供的一些函数,什么可以使用较分来让我们的评分规则多样化。我举个大

    2024年01月24日
    浏览(40)
  • Elasticsearch的全文搜索与匹配

    Elasticsearch是一个开源的搜索和分析引擎,基于Lucene库,用于实现全文搜索和实时分析。它具有高性能、高可扩展性和高可用性,适用于大规模数据的搜索和分析。Elasticsearch的核心功能包括文档存储、搜索引擎、分析引擎和数据可视化。 Elasticsearch的全文搜索功能是其最重要的

    2024年02月22日
    浏览(42)
  • Elasticsearch7.8.0版本入门—— 完全匹配查询文档(高级查询)

    在 Postman 中,向 ES 服务器发 POST 请求 :http://localhost:9200/user/_doc/ 1 ,请求体内容为: 在 Postman 中,向 ES 服务器发 POST 请求 :http://localhost:9200/user/_doc/ 2 ,请求体内容为: 在 Postman 中,向 ES 服务器发 POST 请求 :http://localhost:9200/user/_doc/ 3 ,请求体内容为: 在 Postman 中,向

    2023年04月24日
    浏览(49)
  • Elasticsearch从入门到精通-05ES匹配查询

    👏作者简介:大家好,我是程序员行走的鱼 📖 本篇主要介绍和大家一块学习一下ES各种场景下的匹配查询,有助于我们在项目中进行综合使用 创建索引并指定ik分词器: 添加数据: 需要搜索的document中的remark字段包含java和developer词组 上述语法中,如果将operator的值改为or。则与

    2024年03月27日
    浏览(86)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包