【核磁共振成像】傅里叶重建

这篇具有很好参考价值的文章主要介绍了【核磁共振成像】傅里叶重建。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉

长TR,长TE,是T2加权像;
短TR,短TE,是T1加权像;
长TR,短TE,是PD加权像。


一、傅里叶重建

  磁共振图像反映的是组织的信号强度。在图像中,如果越白或者越亮,则代表组织的信号强度越高
  磁共振的不同序列反映的是不同组织对比或者叫做不同参数。磁共振图像我们一般把它叫做“加权像”,Weighted Image。
   加权或者权重代表突出重点,那种成分占的权重(比例)大。在磁共振成像中,组织所固有的参数特性(T1、T2、PD等)均对磁共振图像的信号强度有所贡献,但是一副磁共振图像,如果反映了各种组织参数在里面,那么就等于没有反映任何指标,因为都是在对图像信号强度做贡献,我们不知道那种贡献大,通过看图像明暗度,不能判断。
  所以,磁共振图像,应该重点反映那种组织对图像的贡献最大。一般,我们是通过调整参数,使磁共振图像主要反映组织某一个方面的特性,这样我们就能够进行判读了。另外,我们不可能得到一个纯粹的只反映组织一个特性的磁共振图像。所以,这也是为什么磁共振图像,很多我们会叫做加权像的原因。
  常规的磁共振图像主要有以下几种:
  T1加权像(T1WI):主要是反映组织之间T1差别的图像,也就是主要反映 组织之间纵向弛豫差别的图像
  T2加权像(T2WI):主要是反映组织之间T2差别的图像,也就是主要 反映组织之间横向弛豫差别的图像
  PD(质子密度)加权像(PDW):主要是反映 组织之间质子密度,也就是氢质子含量差别的图像。


二、填零

  填零:若K空间为是按直线轨迹(笛卡尔方格)全采样,2D或3D-IFT要使用的FFT需要输入数据为2的整数次幂采集的数据通过补零来满足这个条件
  填零导致图像按sinc插补的加采样,在显示矩阵中提供sinc插补像素。填零不增加任何信息含量,不影响SNR,不影响图像的实际分辨率,但填零能给图像信号一个平滑“延申”或降低由“部分体积效应”引起的块状伪影,从而提高图像的表观图像分辨率
  但由于FT长度增加,重建时间增加。对于大矩阵图像数据可能使显示或存档的系统函数卡壳,还可能增大图像中的截断伪影(Gibbs跳动) 的显著性(Gibbs伪影出现的原因是采样不足,或者空间分辨率不够大,或者体素还不够小)。
【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉

经一维傅里叶变化后需经过内插

  部分容积效应:CT图像上各个像素的数值代表相应单位组织全体的平均CT值,它不能如实反映该单位内各种组织本身的CT值。

  Gibbs伪影又叫截断伪影或者叫环形伪影,跟图像的空间分辨率有关。一副图像是包含了无数个(无限个)空间频率的但是我们在通过系统采集图像信号的时候,我们只能采样有限数目的频率。简单来讲就是,我们 用有限的数字体素来描述图像。 在图像的高对比度界面,由于图像变化太大,而有限的像素无法描述这种大变化的时候,则会产生一种伪影,我们把这种伪影叫做 截断伪影,或者 环形伪影,也叫 Gibbs伪影,振铃伪影。 根据这种伪影的特点,它一般出现在图像高对比度界面的周围,形成交替的亮带和暗带这种伪影可以出现在相位编码方向,也可以出现在频率编码方向。但是出现在相位编码方向的概率大。因为,相位编码方向步级决定扫描时间,一般来说,相位编码方向存在采用不足的可能性比频率编码方向大


三、移相

  将序列值输入到FFT时,算法假定DC点(即零频、零时间点)为起始点S0。
  MRI数据一般不是按FFT期望的输入次序采集和储存的。当应用FFT到K空间数据时,需要调整数据列次序以适合FFT的要求,普遍情况是存储数据以DC点位于K空间中点,而在FFT后进行相位校正以补偿N/2位移
【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉

原始K空间数据用作FFT的输入
序列可以看作FFT的输入的周期复制相对于传统MR(直流DC在中心被移动了N/2点)

  FFT算法假定输入、输出数据相对于传统次序移动了N/2。这种移动是 在傅里叶共轭域一个符号交替实现的。符号交替输入给输出移动。对于模重建,FT之后符号交替步可以跳动,但FT之前必须进行符号交替。

  MRI数据不是按FFT期望的输入次序采集和储存的,当应用FFT到K空间数据时,这数据要调整次序以适合FFT的要求。普遍情况是储存数据 以DC点位于Kx、Ky、Kz方向的中点(假定全K空间采样),而在FFT之后进行相位校正以补偿N/2位移。类似的,FFT算法的输出数据序列是以DC值作为起点而不是在中心,这就需要更正次序,移动DC点回到中心(在FFT之前加一个位移就可以自动完成)。


四、数据窗函数

  截断伪影当测量数据只包含磁化强度傅里叶分量完全数据的低频子集时,这种重建的图像包含上冲跳动伪影(特别是靠近锐变的边缘处)。
  切趾:把K空间数据乘以一个能平滑衰减高空间频率的滤波器或窗函数,就能降低跳动伪影。

  1D Tukey窗:适用于MRI的K空间数据的一个窗函数的例子是余弦锥型或Turkey窗,此窗给出的点扩散函数的空间分辨率是各向异性的,即在图像中随方向而变。
【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉

1D Tukey窗 此窗给出的点扩散函数的空间分辨率是各向异性的 即在图像中随方向而变

  不可分割的窗:一个普通的函数时用具有与方向角无关的各向同等截止点Kc的窗,给出各向同性空间分辨率。
【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉

2F可分离Tukey窗,K空间矩阵256*256

  任何磁共振图像,都存在Gibbs伪影如果图像的采样点非常大,那么产生的Gibbs伪影的条纹就近似于无限薄,条纹之间距离近似于无限接近,也就没有伪影了。首要的方法是:减小体素,提高空间分辨率,提高采样,因为提高分辨率,会增加扫描时间,故不采用这种做法。在飞利浦系统中,可以把环形过滤Ringing Filter打开,这样会尽量消除这个伪影。

  点扩展函数(point spread function PSF)描述了成像系统对点源或点对象的响应。点目标的扩散/模糊程度是衡量成像系统质量的一个指标。一个复杂对象的像可以被看作是真实对象和PSF的卷积。然而,当被检测到的光是相干的(coherent),图像在复数域( complex field)的形成是线性的。记录灰度图(intensity image),然后可以引发 cancellations 或其他非线性效应。


五、矩形视野

  很多解剖截面可用椭圆来近似,即矩形视野,由于ADC采样速度足够高,安排频率编码在长FOV方向而相位编码在短FOV方向
  为避免读出方向混叠伪影,可采用过采样技术;要避免相位编码方向的混叠,可采用空间预饱和
  一般有三种方式执行傅里叶变换
  1、离散傅里叶变换(DFT)。但DFT比FFT
  2、K空间内插对于相位编码数据维给出2的整数次幂,然后用FFT。物体是紧支的,sinc内插费时,更快的方法是 方格化。从K空间数据方格化再取样产生混叠,有时造成图像质量损失
  3、相位编码数据维通过填零给出2的整数次幂,然后用FFT,并在图像空间内插以恢复正确的比例。
  奈奎斯特频率定义为信号带宽的两倍。如果实际采样频率高于奈奎斯特频率,即为过采样低于奈奎斯特采样频率进行采样就称为欠采样。过采样能够提高分辨率和信噪比SNR,并且通过放宽抗混叠滤波器的性能要求,有助于避免混叠和相位失真
  部分容积效应:CT图像上各个像素的数值代表相应单位组织全体的平均CT值,它不能如实反映该单位内各种组织本身的CT值。

  空间预饱和脉冲用于抑制来自成像视野内解剖区域的不良信号。尽管在大脑成像中并不常用,但可用于抑制来自邻近血管的信号,从而最大程度地减少了重影伪影。


六、多线圈数据重建

  当多线圈多接受通道采集数据时,各线圈通道的复数像分别单独重建,然后用其平方和的平方根计算出最终图像。如果各线圈的图像是Ij(x,y)(j是线圈编号),则最终的2D图像是:
【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉
  由平方和近似造成的SNR损失只有百分之几,通过用下式近似这个接受线圈B1场:
【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉


七、图像变形校正

  通过折中线性度、减少高度线性区的体积,可达到更高的梯度幅度和斜升率,这样的折中对很多不需要大体积的应用如脑fMRI很有吸引力。因距磁体距离的不同而造成的图像在尺寸和强度上变形,可根据梯度场设计数据或测量数据可以进行校正。而其他由梯度非线性造成的变形一般都由及其自动校正。
【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉

变形的图形

【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉

校正后的图形

  不同评价指标(即特征向量中的不同特征就是所述的不同评价指标)往往具有不同的量纲和量纲单位,这样的情况会影响到数据分析的结果。为了消除指标之间的量纲影响,需要进行数据标准化处理,以解决数据指标之间的可比性。原始数据经过数据标准化处理后,各指标处于同一数量级,适合进行综合对比评价。其中,最典型的就是数据的归一化处理

  简而言之,归一化的目的就是使得预处理的数据被限定在一定的范围内(比如[0,1]或者[-1,1]),从而消除奇异样本数据导致的不良影响

   奇异样本数据 是指相对于其他输入样本特别大或特别小的样本矢量(即特征向量)。奇异样本数据的存在会引起训练时间增大,同时也可能导致无法收敛,因此,当存在奇异样本数据时,在进行训练之前需要对预处理数据进行归一化;反之,不存在奇异样本数据时,则可以不进行归一化。
  (1)归一化后加快了梯度下降求最优解的速度,也即加快训练网络的收敛性;
  (2)归一化有可能提高精度。


八、缩放比例

  MRI信噪比正比于像素体积,也正比于总采集时间(正比于K空间中Kx、Ky、Kz方向采样点数Nx、Ny、Nz及激发次数Nex)的平方根,由下式表示:
【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉
  对于某些接收机硬件,一个DC偏移可能出现在测量的K空间数据中。RF激发脉冲的相位循环可以消除基线;也可以在数据采集采集的开始或结束时测量基线,然后从原始数据中减掉


九、基线校准

  测量基线是在不加梯度和RF的情况下采集数据。选择测量时间给出基线估计(可忽略噪声)。也可以不采集额外的数据,而是在K空间中(FID或回波)对最后几个点取平均来估计基线。一个关键的假定是磁化强度在K空间行的末尾已经衰减或散相,剩余的信号相应到DC偏移。
【核磁共振成像】傅里叶重建,核磁共振成像,论文阅读,论文笔记,图像处理,健康医疗,算法,傅立叶分析,计算机视觉

傅里叶重建步骤流程

  DC是Deflection Coefficient的缩写,是偏因径系数;DC偏移是指由于输入设备的某些问题,导致电流波形偏移了中轴线走向X或者Y方而产生的现象文章来源地址https://www.toymoban.com/news/detail-666916.html

到了这里,关于【核磁共振成像】傅里叶重建的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LabVIEW使用支持向量机对脑磁共振成像进行图像分类

    LabVIEW使用支持向量机对脑磁共振成像进行图像分类 医学成像是用于创建人体解剖学图像以进行临床研究、诊断和治疗的技术和过程。它现在是医疗技术发展最快的领域之一。通常用于获得医学图像的方式是X射线,计算机断层扫描(CT),磁共振成像(MRI)和超声成像。在医

    2024年02月15日
    浏览(44)
  • 傅里叶级数和傅里叶变换之间的关系推理及应用

    傅里叶级数和傅立叶变换是傅里叶分析的两个主要工具,它们之间有密切的关系。 傅里叶级数是将一个周期函数分解为一系列正弦和余弦函数的和。它适用于周期性信号,可以将周期函数表示为一组振幅和相位不同的谐波分量的和。傅里叶级数展示了一个周期函数在不同频率

    2024年02月07日
    浏览(54)
  • 图傅里叶变换

    目录 什么是图信号? 如何理解图信号的”谱“? 图傅里叶变换是什么? 图傅里叶变换中特征值和图信号的总变差有什么关系? 让我们先总结一下,我们想要把图信号  正交分解到一组基  上; 那么怎么得到?可以通过对图的拉普拉斯矩阵 做特征分解得到,即. 于是   

    2024年02月06日
    浏览(41)
  • 傅里叶变换

    在计算机视觉中,有一个经典的变换被广泛使用——傅里叶变换。傅里叶变换是将时间域上的信号转变为频率域上的信号,进而进行图像去噪、图像增强等处理。 什么是时域(Time domain)?从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会

    2024年02月03日
    浏览(44)
  • 格密码:傅里叶矩阵

    目录 一. 铺垫性介绍 1.1 傅里叶级数 1.2 傅里叶矩阵的来源 二. 格基与傅里叶矩阵 2.1 傅里叶矩阵详细解释 2.2 格基与傅里叶矩阵 写在前面:有关傅里叶变换的解释太多了,这篇博客主要总结傅里叶矩阵在格密码中的运用。 对于有一定傅里叶变换基础的同学,可直接跳转2.2看结

    2024年02月03日
    浏览(32)
  • 【Matlab】傅里叶级数展开

    一个信号系统课程中使用Matlab对傅里叶级数进行展开、绘制波形并分析的实验。 周期函数f(t)的周期2pi,f(x)在[-pi, pi]上的表达式为: 由傅里叶级数展开式可得: 直流分量系数: 基波及各次谐波分量的系数: 傅里叶展开F(x)为: 设周期信号f(t),其周期为T,角频率为 ,则该信

    2024年02月07日
    浏览(38)
  • 通俗讲解傅里叶变换

    参考:六一礼物:给孩子解释什么是傅里叶变换 牛!不看任何数学公式来讲解傅里叶变换  如何直观形象、生动有趣地给文科学生介绍傅里叶变换? - 知乎 从基说起…… 从数学的角度,提供一个形象有趣的解释。理解傅里叶变换的钥匙是理解基♂,它能让你重新认识世界。

    2024年02月09日
    浏览(32)
  • 【高数+复变函数】傅里叶变换

    上一节 【高数+复变函数】傅里叶积分 回顾:上一节中主要讲了Fourier积分公式的指数形式及其三角形式 f ( t ) = 1 2 π ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( τ ) e − j ω τ d τ ] e j ω t d ω = 1 π ∫ 0 + ∞ [ ∫ − ∞ + ∞ f ( τ ) cos ⁡ ω ( t − τ ) d τ ] d ω f(t)=frac{1}{2pi}int_{-infty}^{+inf

    2024年02月04日
    浏览(52)
  • 【scipy 基础】--傅里叶变换

    傅里叶变换 是一种数学变换,它可以将一个函数或信号转换为另一个函数或信号,它可以将时域信号转换为频域信号,也可以将频域信号转换为时域信号。 在很多的领域都有广泛的应用,例如信号处理、通信、图像处理、计算机科学、物理学、生物学等。 它最大的功能是能

    2024年02月06日
    浏览(38)
  • 图像的傅里叶变换

    先向大家道歉啊   作为基础知识这内容肯定有人写过   但作为屌丝没时间搜这个出处   也没什么商用价值 就是为了自己好看  收藏不好用 麻烦选别的   真的对不起就是为自己   烦请勿扰   看不惯你了 忍着 傅里叶基础 法国数学家吉恩·巴普提斯特·约瑟夫·傅里叶被

    2023年04月27日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包