https://github.com/ExpressGit/Pytorch_Study_Demo
1、PyTorch 复杂模型构建
- 1、模型截图
- 2、模型部件实现
- 3、模型组装
2、模型定义
2.1、Sequential
- 1、当模型的前向计算为简单串联各个层的计算时, Sequential 类可以通过更加简单的方式定义模型。
- 2、可以接收一个子模块的有序字典(OrderedDict) 或者一系列子模块作为参数来逐一添加 Module 的实例,模型的前向计算就是将这些实例按添加的顺序逐⼀计算
- 3、使用Sequential定义模型的好处在于简单、易读,同时使用Sequential定义的模型不需要再写forward
import torch.nn as nn
net = nn.Sequential(
nn.Linear(784, 256),
nn.ReLU(),
nn.Linear(256, 10),
)
print(net)
Sequential(
(0): Linear(in_features=784, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=10, bias=True)
)
import collections
import torch.nn as nn
net2 = nn.Sequential(collections.OrderedDict([
('fc1', nn.Linear(784, 256)),
('relu1', nn.ReLU()),
('fc2', nn.Linear(256, 10))
]))
print(net2)
Sequential(
(fc1): Linear(in_features=784, out_features=256, bias=True)
(relu1): ReLU()
(fc2): Linear(in_features=256, out_features=10, bias=True)
)
2.2、ModuleList
- ModuleList 接收一个子模块(或层,需属于nn.Module类)的列表作为输入,然后也可以类似List那样进行append和extend操作
- nn.ModuleList 并没有定义一个网络,它只是将不同的模块储存在一起。ModuleList中元素的先后顺序并不代表其在网络中的真实位置顺序
net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1]) # 类似List的索引访问
print(net)
Linear(in_features=256, out_features=10, bias=True)
ModuleList(
(0): Linear(in_features=784, out_features=256, bias=True)
(1): ReLU()
(2): Linear(in_features=256, out_features=10, bias=True)
)
2.3、ModuleDict
- ModuleList 接收一个子模块(或层,需属于nn.Module类)的列表作为输入,然后也可以类似List那样进行append和extend操作
- 增加子模块或层的同时权重也会自动添加到网络中来
net = nn.ModuleDict({
'linear': nn.Linear(784, 256),
'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict(
(linear): Linear(in_features=784, out_features=256, bias=True)
(act): ReLU()
(output): Linear(in_features=256, out_features=10, bias=True)
)
3、手搓Restnet50
3.1、Restnet50
resnet 在imageNet竞赛中分类任务第一名、目标检测第一名,获得COCO数据集中目标检测第一名,图像分割第一名。
3.2、手搓思路
resnet50讲解,网络的输入照片大小是224x224的经过conv1,conv2,conv3,conv4,conv5最后在平均池化,全连接层。由于中间有重复利用的模块,所以我们需要将它们写成一个类,用来重复调用即可
3.3、resetnet核心要点:
- 1、提出residual模块(残差)
- 2、使用Batch Normalization加速训练(均值为0,方差为1)
虚线代表进行残差的部分文章来源:https://www.toymoban.com/news/detail-667112.html
文章来源地址https://www.toymoban.com/news/detail-667112.html
3.4 模型结构解析(restnet50)
- 1、conv1,stride=2,kernel_size=7,out_chnnels=64
- 2、conv2_x
- 2.1、 max_pool:kernel_size=3, stride=2
- 2.2、 conv_01:stride=1,kernel_size=1,out_chnnels=64
- 2.3、 conv_02:stride=2,kernel_size=3,out_chnnels=64
- 2.4、 conv_03:stride=1,kernel_size=1,out_chnnels=256
- 2.5、 layers(conv_01+conv_02+conv_03)*3
- 3、conv3_x
- 3.1、conv_01:stride=1,kernel_size=1,out_chnnels=128
- 3.2、conv_02:stride=2,kernel_size=3,out_chnnels=128
- 3.3、conv_03:stride=1,kernel_size=1,out_chnnels=512
- 3.4、residual:stride=2,kernel_size=1,out_chnnels=512
- 3.5、layers(conv_01+conv_02+conv_03)*4
- 4、conv4_x
- 4.1、conv_01:stride=1,kernel_size=1,out_chnnels=256
- 4.2、conv_02:stride=2,kernel_size=3,out_chnnels=256
- 4.3、conv_03:stride=1,kernel_size=1,out_chnnels=1024
- 4.4、residual:stride=2,kernel_size=1,out_chnnels=1024
- 4.5、layers(conv_01+conv_02+conv_03)*6
- 5、conv5_x
- 5.1、conv_01:stride=1,kernel_size=1,out_chnnels=512
- 5.2、conv_02:stride=2,kernel_size=3,out_chnnels=512
- 5.3、conv_03:stride=1,kernel_size=1,out_chnnels=2048
- 5.4、residual:stride=2,kernel_size=1,out_chnnels=2048
- 5.5、layers(conv_01+conv_02+conv_03)*3
- 6、fc
- 6.1、AdaptiveAvgPool2d:output=(1,1)
- 6.2、flatten:(x, 1)
- 6.3、fc:linear(512 * 4,num_class)
import torch.nn as nn
import torch
class Block(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=False):
super(Block, self).__init__()
out_channel_01, out_channel_02, out_channel_03 = out_channels
self.downsample = downsample
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channel_01, kernel_size=1, stride=1,bias=False),
nn.BatchNorm2d(out_channel_01),
nn.ReLU(inplace=True)
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channel_01, out_channel_02, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_channel_02),
nn.ReLU(inplace=True)
)
self.conv3 = nn.Sequential(
nn.Conv2d(out_channel_02, out_channel_03, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(out_channel_03),
)
if downsample:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channel_03, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channel_03)
)
def forward(self,x):
x_shortcut = x
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
if self.downsample:
x_shortcut = self.shortcut(x_shortcut)
x = x + x_shortcut
x = self.relu(x)
return x
class Resnet50(nn.Module):
def __init__(self):
super(Resnet50,self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64),
nn.ReLU(),
)
Layers = [3, 4, 6, 3]
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.conv2 = self._make_layer(64, (64, 64, 256), Layers[0],1)
self.conv3 = self._make_layer(256, (128, 128, 512), Layers[1], 2)
self.conv4 = self._make_layer(512, (256, 256, 1024), Layers[2], 2)
self.conv5 = self._make_layer(1024, (512, 512, 2048), Layers[3], 2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Sequential(
nn.Linear(2048, 1000)
)
def forward(self, input):
x = self.conv1(input)
x = self.maxpool(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def _make_layer(self, in_channels, out_channels, blocks, stride=1):
layers = []
block_1 = Block(in_channels, out_channels, stride=stride, downsample=True)
layers.append(block_1)
for i in range(1, blocks):
layers.append(Block(out_channels[2], out_channels, stride=1, downsample=False))
return nn.Sequential(*layers)
#打印网络结构
net = Resnet50()
x = torch.rand((10, 3, 224, 224))
for name,layer in net.named_children():
if name != "fc":
x = layer(x)
print(name, 'output shaoe:', x.shape)
else:
x = x.view(x.size(0), -1)
x = layer(x)
print(name, 'output shaoe:', x.shape)
conv1 output shaoe: torch.Size([10, 64, 112, 112])
maxpool output shaoe: torch.Size([10, 64, 56, 56])
conv2 output shaoe: torch.Size([10, 256, 56, 56])
conv3 output shaoe: torch.Size([10, 512, 28, 28])
conv4 output shaoe: torch.Size([10, 1024, 14, 14])
conv5 output shaoe: torch.Size([10, 2048, 7, 7])
avgpool output shaoe: torch.Size([10, 2048, 1, 1])
fc output shaoe: torch.Size([10, 1000])
#torchinfo 可视化网络结构
from torchinfo import summary
net = Resnet50()
summary(net,((10, 3, 224, 224)))
==========================================================================================
Layer (type:depth-idx) Output Shape Param #
==========================================================================================
Resnet50 [10, 1000] --
├─Sequential: 1-1 [10, 64, 112, 112] --
│ └─Conv2d: 2-1 [10, 64, 112, 112] 9,472
│ └─BatchNorm2d: 2-2 [10, 64, 112, 112] 128
│ └─ReLU: 2-3 [10, 64, 112, 112] --
├─MaxPool2d: 1-2 [10, 64, 56, 56] --
├─Sequential: 1-3 [10, 256, 56, 56] --
│ └─Block: 2-4 [10, 256, 56, 56] --
│ │ └─Sequential: 3-1 [10, 64, 56, 56] 4,224
│ │ └─Sequential: 3-2 [10, 64, 56, 56] 36,992
│ │ └─Sequential: 3-3 [10, 256, 56, 56] 16,896
│ │ └─Sequential: 3-4 [10, 256, 56, 56] 16,896
│ │ └─ReLU: 3-5 [10, 256, 56, 56] --
│ └─Block: 2-5 [10, 256, 56, 56] --
│ │ └─Sequential: 3-6 [10, 64, 56, 56] 16,512
│ │ └─Sequential: 3-7 [10, 64, 56, 56] 36,992
│ │ └─Sequential: 3-8 [10, 256, 56, 56] 16,896
│ │ └─ReLU: 3-9 [10, 256, 56, 56] --
│ └─Block: 2-6 [10, 256, 56, 56] --
│ │ └─Sequential: 3-10 [10, 64, 56, 56] 16,512
│ │ └─Sequential: 3-11 [10, 64, 56, 56] 36,992
│ │ └─Sequential: 3-12 [10, 256, 56, 56] 16,896
│ │ └─ReLU: 3-13 [10, 256, 56, 56] --
├─Sequential: 1-4 [10, 512, 28, 28] --
│ └─Block: 2-7 [10, 512, 28, 28] --
│ │ └─Sequential: 3-14 [10, 128, 56, 56] 33,024
│ │ └─Sequential: 3-15 [10, 128, 28, 28] 147,712
│ │ └─Sequential: 3-16 [10, 512, 28, 28] 66,560
│ │ └─Sequential: 3-17 [10, 512, 28, 28] 132,096
│ │ └─ReLU: 3-18 [10, 512, 28, 28] --
│ └─Block: 2-8 [10, 512, 28, 28] --
│ │ └─Sequential: 3-19 [10, 128, 28, 28] 65,792
│ │ └─Sequential: 3-20 [10, 128, 28, 28] 147,712
│ │ └─Sequential: 3-21 [10, 512, 28, 28] 66,560
│ │ └─ReLU: 3-22 [10, 512, 28, 28] --
│ └─Block: 2-9 [10, 512, 28, 28] --
│ │ └─Sequential: 3-23 [10, 128, 28, 28] 65,792
│ │ └─Sequential: 3-24 [10, 128, 28, 28] 147,712
│ │ └─Sequential: 3-25 [10, 512, 28, 28] 66,560
│ │ └─ReLU: 3-26 [10, 512, 28, 28] --
│ └─Block: 2-10 [10, 512, 28, 28] --
│ │ └─Sequential: 3-27 [10, 128, 28, 28] 65,792
│ │ └─Sequential: 3-28 [10, 128, 28, 28] 147,712
│ │ └─Sequential: 3-29 [10, 512, 28, 28] 66,560
│ │ └─ReLU: 3-30 [10, 512, 28, 28] --
├─Sequential: 1-5 [10, 1024, 14, 14] --
│ └─Block: 2-11 [10, 1024, 14, 14] --
│ │ └─Sequential: 3-31 [10, 256, 28, 28] 131,584
│ │ └─Sequential: 3-32 [10, 256, 14, 14] 590,336
│ │ └─Sequential: 3-33 [10, 1024, 14, 14] 264,192
│ │ └─Sequential: 3-34 [10, 1024, 14, 14] 526,336
│ │ └─ReLU: 3-35 [10, 1024, 14, 14] --
│ └─Block: 2-12 [10, 1024, 14, 14] --
│ │ └─Sequential: 3-36 [10, 256, 14, 14] 262,656
│ │ └─Sequential: 3-37 [10, 256, 14, 14] 590,336
│ │ └─Sequential: 3-38 [10, 1024, 14, 14] 264,192
│ │ └─ReLU: 3-39 [10, 1024, 14, 14] --
│ └─Block: 2-13 [10, 1024, 14, 14] --
│ │ └─Sequential: 3-40 [10, 256, 14, 14] 262,656
│ │ └─Sequential: 3-41 [10, 256, 14, 14] 590,336
│ │ └─Sequential: 3-42 [10, 1024, 14, 14] 264,192
│ │ └─ReLU: 3-43 [10, 1024, 14, 14] --
│ └─Block: 2-14 [10, 1024, 14, 14] --
│ │ └─Sequential: 3-44 [10, 256, 14, 14] 262,656
│ │ └─Sequential: 3-45 [10, 256, 14, 14] 590,336
│ │ └─Sequential: 3-46 [10, 1024, 14, 14] 264,192
│ │ └─ReLU: 3-47 [10, 1024, 14, 14] --
│ └─Block: 2-15 [10, 1024, 14, 14] --
│ │ └─Sequential: 3-48 [10, 256, 14, 14] 262,656
│ │ └─Sequential: 3-49 [10, 256, 14, 14] 590,336
│ │ └─Sequential: 3-50 [10, 1024, 14, 14] 264,192
│ │ └─ReLU: 3-51 [10, 1024, 14, 14] --
│ └─Block: 2-16 [10, 1024, 14, 14] --
│ │ └─Sequential: 3-52 [10, 256, 14, 14] 262,656
│ │ └─Sequential: 3-53 [10, 256, 14, 14] 590,336
│ │ └─Sequential: 3-54 [10, 1024, 14, 14] 264,192
│ │ └─ReLU: 3-55 [10, 1024, 14, 14] --
├─Sequential: 1-6 [10, 2048, 7, 7] --
│ └─Block: 2-17 [10, 2048, 7, 7] --
│ │ └─Sequential: 3-56 [10, 512, 14, 14] 525,312
│ │ └─Sequential: 3-57 [10, 512, 7, 7] 2,360,320
│ │ └─Sequential: 3-58 [10, 2048, 7, 7] 1,052,672
│ │ └─Sequential: 3-59 [10, 2048, 7, 7] 2,101,248
│ │ └─ReLU: 3-60 [10, 2048, 7, 7] --
│ └─Block: 2-18 [10, 2048, 7, 7] --
│ │ └─Sequential: 3-61 [10, 512, 7, 7] 1,049,600
│ │ └─Sequential: 3-62 [10, 512, 7, 7] 2,360,320
│ │ └─Sequential: 3-63 [10, 2048, 7, 7] 1,052,672
│ │ └─ReLU: 3-64 [10, 2048, 7, 7] --
│ └─Block: 2-19 [10, 2048, 7, 7] --
│ │ └─Sequential: 3-65 [10, 512, 7, 7] 1,049,600
│ │ └─Sequential: 3-66 [10, 512, 7, 7] 2,360,320
│ │ └─Sequential: 3-67 [10, 2048, 7, 7] 1,052,672
│ │ └─ReLU: 3-68 [10, 2048, 7, 7] --
├─AdaptiveAvgPool2d: 1-7 [10, 2048, 1, 1] --
├─Sequential: 1-8 [10, 1000] --
│ └─Linear: 2-20 [10, 1000] 2,049,000
==========================================================================================
Total params: 25,557,096
Trainable params: 25,557,096
Non-trainable params: 0
Total mult-adds (G): 40.90
==========================================================================================
Input size (MB): 6.02
Forward/backward pass size (MB): 1778.32
Params size (MB): 102.23
Estimated Total Size (MB): 1886.57
==========================================================================================
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
import torchvision
import os
import numpy as np
import torch
#超参数定义
# 批次的大小
batch_size = 16 #可选32、64、128
# 优化器的学习率
lr = 1e-4
#运行epoch
max_epochs = 2
# 方案一:指定GPU的方式
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # 指明调用的GPU为0,1号
# 方案二:使用“device”,后续对要使用GPU的变量用.to(device)即可
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 指明调用的GPU为1号
# 数据读取
#cifar10数据集为例给出构建Dataset类的方式
from torchvision import datasets
#“data_transform”可以对图像进行一定的变换,如翻转、裁剪、归一化等操作,可自己定义
data_transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))
])
train_cifar_dataset = datasets.CIFAR10('cifar10',train=True, download=False,transform=data_transform)
test_cifar_dataset = datasets.CIFAR10('cifar10',train=False, download=False,transform=data_transform)
#构建好Dataset后,就可以使用DataLoader来按批次读入数据了
train_loader = torch.utils.data.DataLoader(train_cifar_dataset,
batch_size=batch_size, num_workers=4,
shuffle=True, drop_last=True)
test_loader = torch.utils.data.DataLoader(test_cifar_dataset,
batch_size=batch_size, num_workers=4,
shuffle=False)
# from tensorboard import SummaryWriter
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter('./runs')
#训练&验证
writer = SummaryWriter('./runs')
# Set fixed random number seed
torch.manual_seed(42)
# 定义损失函数和优化器
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
My_model = Resnet50()
My_model = My_model.to(device)
# 交叉熵
criterion = torch.nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(My_model.parameters(), lr=lr)
epoch = max_epochs
total_step = len(train_loader)
train_all_loss = []
test_all_loss = []
for i in range(epoch):
My_model.train()
train_total_loss = 0
train_total_num = 0
train_total_correct = 0
for iter, (images,labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Write the network graph at epoch 0, batch 0
if epoch == 0 and iter == 0:
writer.add_graph(My_model, input_to_model=(images,labels)[0], verbose=True)
# Write an image at every batch 0
if iter == 0:
writer.add_image("Example input", images[0], global_step=epoch)
outputs = My_model(images)
loss = criterion(outputs,labels)
train_total_correct += (outputs.argmax(1) == labels).sum().item()
#backword
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_total_num += labels.shape[0]
train_total_loss += loss.item()
# Print statistics
writer.add_scalar("Loss/Minibatches", train_total_loss, train_total_num)
print("Epoch [{}/{}], Iter [{}/{}], train_loss:{:4f}".format(i+1,epoch,iter+1,total_step,loss.item()/labels.shape[0]))
# Write loss for epoch
writer.add_scalar("Loss/Epochs", train_total_loss, epoch)
My_model.eval()
test_total_loss = 0
test_total_correct = 0
test_total_num = 0
for iter,(images,labels) in enumerate(test_loader):
images = images.to(device)
labels = labels.to(device)
outputs = My_model(images)
loss = criterion(outputs,labels)
test_total_correct += (outputs.argmax(1) == labels).sum().item()
test_total_loss += loss.item()
test_total_num += labels.shape[0]
print("Epoch [{}/{}], train_loss:{:.4f}, train_acc:{:.4f}%, test_loss:{:.4f}, test_acc:{:.4f}%".format(
i+1, epoch, train_total_loss / train_total_num, train_total_correct / train_total_num * 100, test_total_loss / test_total_num, test_total_correct / test_total_num * 100
))
train_all_loss.append(np.round(train_total_loss / train_total_num,4))
test_all_loss.append(np.round(test_total_loss / test_total_num,4))
Epoch [1/2], Iter [1/3125], train_loss:0.430043
Epoch [1/2], Iter [2/3125], train_loss:0.399217
Epoch [1/2], Iter [3/3125], train_loss:0.391730
Epoch [1/2], Iter [4/3125], train_loss:0.381970
Epoch [1/2], Iter [5/3125], train_loss:0.337084
Epoch [1/2], Iter [6/3125], train_loss:0.322986
Epoch [1/2], Iter [7/3125], train_loss:0.328911
Epoch [1/2], Iter [8/3125], train_loss:0.287385
Epoch [1/2], Iter [9/3125], train_loss:0.289794
Epoch [1/2], Iter [10/3125], train_loss:0.247583
Epoch [1/2], Iter [11/3125], train_loss:0.239406
Epoch [1/2], Iter [12/3125], train_loss:0.252444
Epoch [1/2], Iter [13/3125], train_loss:0.204779
Epoch [1/2], Iter [14/3125], train_loss:0.197130
Epoch [1/2], Iter [15/3125], train_loss:0.198398
Epoch [1/2], Iter [16/3125], train_loss:0.234318
Epoch [1/2], Iter [17/3125], train_loss:0.175272
Epoch [1/2], Iter [18/3125], train_loss:0.175399
Epoch [1/2], Iter [19/3125], train_loss:0.166614
Epoch [1/2], Iter [20/3125], train_loss:0.193967
Epoch [1/2], Iter [21/3125], train_loss:0.197993
Epoch [1/2], Iter [22/3125], train_loss:0.159795
Epoch [1/2], Iter [23/3125], train_loss:0.164005
Epoch [1/2], Iter [24/3125], train_loss:0.170589
Epoch [1/2], Iter [25/3125], train_loss:0.138586
Epoch [1/2], Iter [26/3125], train_loss:0.160901
Epoch [1/2], Iter [27/3125], train_loss:0.159692
Epoch [1/2], Iter [28/3125], train_loss:0.174360
Epoch [1/2], Iter [29/3125], train_loss:0.166350
Epoch [1/2], Iter [30/3125], train_loss:0.163763
Epoch [1/2], Iter [31/3125], train_loss:0.174778
Epoch [1/2], Iter [32/3125], train_loss:0.169331
Epoch [1/2], Iter [33/3125], train_loss:0.151900
Epoch [1/2], Iter [34/3125], train_loss:0.167900
Epoch [1/2], Iter [35/3125], train_loss:0.174177
Epoch [1/2], Iter [36/3125], train_loss:0.174313
Epoch [1/2], Iter [37/3125], train_loss:0.165772
Epoch [1/2], Iter [38/3125], train_loss:0.163259
Epoch [1/2], Iter [39/3125], train_loss:0.157740
Epoch [1/2], Iter [40/3125], train_loss:0.176562
Epoch [1/2], Iter [41/3125], train_loss:0.173564
Epoch [1/2], Iter [42/3125], train_loss:0.167849
Epoch [1/2], Iter [43/3125], train_loss:0.158219
Epoch [1/2], Iter [44/3125], train_loss:0.153129
Epoch [1/2], Iter [45/3125], train_loss:0.165890
Epoch [1/2], Iter [46/3125], train_loss:0.175445
Epoch [1/2], Iter [47/3125], train_loss:0.161246
Epoch [1/2], Iter [48/3125], train_loss:0.152963
Epoch [1/2], Iter [49/3125], train_loss:0.159098
Epoch [1/2], Iter [50/3125], train_loss:0.149376
Epoch [1/2], Iter [51/3125], train_loss:0.169790
Epoch [1/2], Iter [52/3125], train_loss:0.156566
Epoch [1/2], Iter [53/3125], train_loss:0.137577
Epoch [1/2], Iter [54/3125], train_loss:0.154473
Epoch [1/2], Iter [55/3125], train_loss:0.170818
Epoch [1/2], Iter [56/3125], train_loss:0.168578
Epoch [1/2], Iter [57/3125], train_loss:0.127439
Epoch [1/2], Iter [58/3125], train_loss:0.130195
Epoch [1/2], Iter [59/3125], train_loss:0.170215
Epoch [1/2], Iter [60/3125], train_loss:0.137980
Epoch [1/2], Iter [61/3125], train_loss:0.190205
Epoch [1/2], Iter [62/3125], train_loss:0.173095
Epoch [1/2], Iter [63/3125], train_loss:0.172991
Epoch [1/2], Iter [64/3125], train_loss:0.185437
Epoch [1/2], Iter [65/3125], train_loss:0.143422
Epoch [1/2], Iter [66/3125], train_loss:0.167832
Epoch [1/2], Iter [67/3125], train_loss:0.143599
Epoch [1/2], Iter [68/3125], train_loss:0.140594
Epoch [1/2], Iter [69/3125], train_loss:0.136511
Epoch [1/2], Iter [70/3125], train_loss:0.148203
Epoch [1/2], Iter [71/3125], train_loss:0.136001
Epoch [1/2], Iter [72/3125], train_loss:0.127203
Epoch [1/2], Iter [73/3125], train_loss:0.148387
Epoch [1/2], Iter [74/3125], train_loss:0.160355
Epoch [1/2], Iter [75/3125], train_loss:0.142079
Epoch [1/2], Iter [76/3125], train_loss:0.178135
Epoch [1/2], Iter [77/3125], train_loss:0.169931
Epoch [1/2], Iter [78/3125], train_loss:0.164737
Epoch [1/2], Iter [79/3125], train_loss:0.137772
Epoch [1/2], Iter [80/3125], train_loss:0.140191
Epoch [1/2], Iter [81/3125], train_loss:0.168053
Epoch [1/2], Iter [82/3125], train_loss:0.169713
Epoch [1/2], Iter [83/3125], train_loss:0.166053
Epoch [1/2], Iter [84/3125], train_loss:0.146992
Epoch [1/2], Iter [85/3125], train_loss:0.138336
Epoch [1/2], Iter [86/3125], train_loss:0.133364
Epoch [1/2], Iter [87/3125], train_loss:0.147147
Epoch [1/2], Iter [88/3125], train_loss:0.165000
Epoch [1/2], Iter [89/3125], train_loss:0.187516
Epoch [1/2], Iter [90/3125], train_loss:0.152296
Epoch [1/2], Iter [91/3125], train_loss:0.159449
Epoch [1/2], Iter [92/3125], train_loss:0.155747
Epoch [1/2], Iter [93/3125], train_loss:0.186031
Epoch [1/2], Iter [94/3125], train_loss:0.161650
Epoch [1/2], Iter [95/3125], train_loss:0.180560
Epoch [1/2], Iter [96/3125], train_loss:0.152180
Epoch [1/2], Iter [97/3125], train_loss:0.156310
Epoch [1/2], Iter [98/3125], train_loss:0.157958
Epoch [1/2], Iter [99/3125], train_loss:0.153323
Epoch [1/2], Iter [100/3125], train_loss:0.163590
Epoch [1/2], Iter [101/3125], train_loss:0.139193
Epoch [1/2], Iter [102/3125], train_loss:0.182074
Epoch [1/2], Iter [103/3125], train_loss:0.171562
Epoch [1/2], Iter [104/3125], train_loss:0.135230
Epoch [1/2], Iter [105/3125], train_loss:0.157589
Epoch [1/2], Iter [106/3125], train_loss:0.193017
Epoch [1/2], Iter [107/3125], train_loss:0.149230
Epoch [1/2], Iter [108/3125], train_loss:0.122373
Epoch [1/2], Iter [109/3125], train_loss:0.145265
Epoch [1/2], Iter [110/3125], train_loss:0.152513
Epoch [1/2], Iter [111/3125], train_loss:0.156356
Epoch [1/2], Iter [112/3125], train_loss:0.141945
Epoch [1/2], Iter [113/3125], train_loss:0.160180
Epoch [1/2], Iter [114/3125], train_loss:0.140410
Epoch [1/2], Iter [115/3125], train_loss:0.141819
Epoch [1/2], Iter [116/3125], train_loss:0.150955
Epoch [1/2], Iter [117/3125], train_loss:0.135359
Epoch [1/2], Iter [118/3125], train_loss:0.166497
Epoch [1/2], Iter [119/3125], train_loss:0.142630
Epoch [1/2], Iter [120/3125], train_loss:0.174121
Epoch [1/2], Iter [121/3125], train_loss:0.158250
Epoch [1/2], Iter [122/3125], train_loss:0.146818
Epoch [1/2], Iter [123/3125], train_loss:0.149903
Epoch [1/2], Iter [124/3125], train_loss:0.150738
Epoch [1/2], Iter [125/3125], train_loss:0.152311
Epoch [1/2], Iter [126/3125], train_loss:0.148560
Epoch [1/2], Iter [127/3125], train_loss:0.134343
Epoch [1/2], Iter [128/3125], train_loss:0.144648
Epoch [1/2], Iter [129/3125], train_loss:0.150432
Epoch [1/2], Iter [130/3125], train_loss:0.126187
Epoch [1/2], Iter [131/3125], train_loss:0.137051
Epoch [1/2], Iter [132/3125], train_loss:0.145356
Epoch [1/2], Iter [133/3125], train_loss:0.140084
Epoch [1/2], Iter [134/3125], train_loss:0.158875
Epoch [1/2], Iter [135/3125], train_loss:0.152066
Epoch [1/2], Iter [136/3125], train_loss:0.147993
Epoch [1/2], Iter [137/3125], train_loss:0.137815
Epoch [1/2], Iter [138/3125], train_loss:0.157255
Epoch [1/2], Iter [139/3125], train_loss:0.172245
Epoch [1/2], Iter [140/3125], train_loss:0.119922
Epoch [1/2], Iter [141/3125], train_loss:0.147535
Epoch [1/2], Iter [142/3125], train_loss:0.135512
Epoch [1/2], Iter [143/3125], train_loss:0.132385
Epoch [1/2], Iter [144/3125], train_loss:0.167151
Epoch [1/2], Iter [145/3125], train_loss:0.173200
Epoch [1/2], Iter [146/3125], train_loss:0.153549
Epoch [1/2], Iter [147/3125], train_loss:0.147774
Epoch [1/2], Iter [148/3125], train_loss:0.138399
Epoch [1/2], Iter [149/3125], train_loss:0.147270
Epoch [1/2], Iter [150/3125], train_loss:0.146461
Epoch [1/2], Iter [151/3125], train_loss:0.127806
Epoch [1/2], Iter [152/3125], train_loss:0.143855
Epoch [1/2], Iter [153/3125], train_loss:0.162357
Epoch [1/2], Iter [154/3125], train_loss:0.099439
Epoch [1/2], Iter [155/3125], train_loss:0.156767
Epoch [1/2], Iter [156/3125], train_loss:0.141598
Epoch [1/2], Iter [157/3125], train_loss:0.144462
Epoch [1/2], Iter [158/3125], train_loss:0.144916
Epoch [1/2], Iter [159/3125], train_loss:0.140672
Epoch [1/2], Iter [160/3125], train_loss:0.141314
Epoch [1/2], Iter [161/3125], train_loss:0.159581
Epoch [1/2], Iter [162/3125], train_loss:0.130852
Epoch [1/2], Iter [163/3125], train_loss:0.141293
Epoch [1/2], Iter [164/3125], train_loss:0.146917
Epoch [1/2], Iter [165/3125], train_loss:0.147925
Epoch [1/2], Iter [166/3125], train_loss:0.152431
Epoch [1/2], Iter [167/3125], train_loss:0.151558
Epoch [1/2], Iter [168/3125], train_loss:0.141326
Epoch [1/2], Iter [169/3125], train_loss:0.165799
Epoch [1/2], Iter [170/3125], train_loss:0.174329
Epoch [1/2], Iter [171/3125], train_loss:0.138570
Epoch [1/2], Iter [172/3125], train_loss:0.117236
Epoch [1/2], Iter [173/3125], train_loss:0.116505
Epoch [1/2], Iter [174/3125], train_loss:0.169864
Epoch [1/2], Iter [175/3125], train_loss:0.180966
Epoch [1/2], Iter [176/3125], train_loss:0.157741
Epoch [1/2], Iter [177/3125], train_loss:0.158464
Epoch [1/2], Iter [178/3125], train_loss:0.169416
Epoch [1/2], Iter [179/3125], train_loss:0.135209
Epoch [1/2], Iter [180/3125], train_loss:0.149782
Epoch [1/2], Iter [181/3125], train_loss:0.145131
Epoch [1/2], Iter [182/3125], train_loss:0.163330
Epoch [1/2], Iter [183/3125], train_loss:0.148288
Epoch [1/2], Iter [184/3125], train_loss:0.162434
Epoch [1/2], Iter [185/3125], train_loss:0.138171
Epoch [1/2], Iter [186/3125], train_loss:0.174453
Epoch [1/2], Iter [187/3125], train_loss:0.152246
Epoch [1/2], Iter [188/3125], train_loss:0.145182
Epoch [1/2], Iter [189/3125], train_loss:0.138013
Epoch [1/2], Iter [190/3125], train_loss:0.129477
Epoch [1/2], Iter [191/3125], train_loss:0.167296
Epoch [1/2], Iter [192/3125], train_loss:0.151581
Epoch [1/2], Iter [193/3125], train_loss:0.129222
Epoch [1/2], Iter [194/3125], train_loss:0.144835
Epoch [1/2], Iter [195/3125], train_loss:0.155114
Epoch [1/2], Iter [196/3125], train_loss:0.159840
Epoch [1/2], Iter [197/3125], train_loss:0.140606
Epoch [1/2], Iter [198/3125], train_loss:0.120595
Epoch [1/2], Iter [199/3125], train_loss:0.166237
Epoch [1/2], Iter [200/3125], train_loss:0.139809
Epoch [1/2], Iter [201/3125], train_loss:0.152461
Epoch [1/2], Iter [202/3125], train_loss:0.180673
Epoch [1/2], Iter [203/3125], train_loss:0.152161
Epoch [1/2], Iter [204/3125], train_loss:0.162040
Epoch [1/2], Iter [205/3125], train_loss:0.116725
Epoch [1/2], Iter [206/3125], train_loss:0.149293
Epoch [1/2], Iter [207/3125], train_loss:0.133494
Epoch [1/2], Iter [208/3125], train_loss:0.151276
Epoch [1/2], Iter [209/3125], train_loss:0.135684
Epoch [1/2], Iter [210/3125], train_loss:0.146015
Epoch [1/2], Iter [211/3125], train_loss:0.154200
Epoch [1/2], Iter [212/3125], train_loss:0.163789
Epoch [1/2], Iter [213/3125], train_loss:0.143287
Epoch [1/2], Iter [214/3125], train_loss:0.156911
Epoch [1/2], Iter [215/3125], train_loss:0.148797
Epoch [1/2], Iter [216/3125], train_loss:0.135099
Epoch [1/2], Iter [217/3125], train_loss:0.147233
Epoch [1/2], Iter [218/3125], train_loss:0.132503
Epoch [1/2], Iter [219/3125], train_loss:0.131973
Epoch [1/2], Iter [220/3125], train_loss:0.142257
Epoch [1/2], Iter [221/3125], train_loss:0.131663
Epoch [1/2], Iter [222/3125], train_loss:0.165459
Epoch [1/2], Iter [223/3125], train_loss:0.140871
Epoch [1/2], Iter [224/3125], train_loss:0.176863
Epoch [1/2], Iter [225/3125], train_loss:0.125788
Epoch [1/2], Iter [226/3125], train_loss:0.145382
Epoch [1/2], Iter [227/3125], train_loss:0.133045
Epoch [1/2], Iter [228/3125], train_loss:0.147877
Epoch [1/2], Iter [229/3125], train_loss:0.133725
Epoch [1/2], Iter [230/3125], train_loss:0.122687
Epoch [1/2], Iter [231/3125], train_loss:0.160091
Epoch [1/2], Iter [232/3125], train_loss:0.158228
Epoch [1/2], Iter [233/3125], train_loss:0.149637
Epoch [1/2], Iter [234/3125], train_loss:0.115466
Epoch [1/2], Iter [235/3125], train_loss:0.119706
Epoch [1/2], Iter [236/3125], train_loss:0.165916
Epoch [1/2], Iter [237/3125], train_loss:0.127058
Epoch [1/2], Iter [238/3125], train_loss:0.135110
Epoch [1/2], Iter [239/3125], train_loss:0.131467
Epoch [1/2], Iter [240/3125], train_loss:0.149502
Epoch [1/2], Iter [241/3125], train_loss:0.147800
Epoch [1/2], Iter [242/3125], train_loss:0.164283
Epoch [1/2], Iter [243/3125], train_loss:0.152627
Epoch [1/2], Iter [244/3125], train_loss:0.139253
Epoch [1/2], Iter [245/3125], train_loss:0.140246
Epoch [1/2], Iter [246/3125], train_loss:0.128954
Epoch [1/2], Iter [247/3125], train_loss:0.148527
Epoch [1/2], Iter [248/3125], train_loss:0.132301
Epoch [1/2], Iter [249/3125], train_loss:0.154204
Epoch [1/2], Iter [250/3125], train_loss:0.128128
Epoch [1/2], Iter [251/3125], train_loss:0.157499
Epoch [1/2], Iter [252/3125], train_loss:0.134000
Epoch [1/2], Iter [253/3125], train_loss:0.153699
Epoch [1/2], Iter [254/3125], train_loss:0.153093
Epoch [1/2], Iter [255/3125], train_loss:0.134238
Epoch [1/2], Iter [256/3125], train_loss:0.151899
Epoch [1/2], Iter [257/3125], train_loss:0.129526
Epoch [1/2], Iter [258/3125], train_loss:0.118807
Epoch [1/2], Iter [259/3125], train_loss:0.140177
Epoch [1/2], Iter [260/3125], train_loss:0.155319
Epoch [1/2], Iter [261/3125], train_loss:0.138391
Epoch [1/2], Iter [262/3125], train_loss:0.150529
Epoch [1/2], Iter [263/3125], train_loss:0.144276
Epoch [1/2], Iter [264/3125], train_loss:0.140310
Epoch [1/2], Iter [265/3125], train_loss:0.121239
Epoch [1/2], Iter [266/3125], train_loss:0.167146
Epoch [1/2], Iter [267/3125], train_loss:0.189327
Epoch [1/2], Iter [268/3125], train_loss:0.110306
Epoch [1/2], Iter [269/3125], train_loss:0.151858
Epoch [1/2], Iter [270/3125], train_loss:0.166866
Epoch [1/2], Iter [271/3125], train_loss:0.153607
Epoch [1/2], Iter [272/3125], train_loss:0.120162
Epoch [1/2], Iter [273/3125], train_loss:0.173903
Epoch [1/2], Iter [274/3125], train_loss:0.161149
Epoch [1/2], Iter [275/3125], train_loss:0.170201
Epoch [1/2], Iter [276/3125], train_loss:0.145268
Epoch [1/2], Iter [277/3125], train_loss:0.136687
Epoch [1/2], Iter [278/3125], train_loss:0.144772
Epoch [1/2], Iter [279/3125], train_loss:0.151712
Epoch [1/2], Iter [280/3125], train_loss:0.120698
Epoch [1/2], Iter [281/3125], train_loss:0.144862
Epoch [1/2], Iter [282/3125], train_loss:0.160759
Epoch [1/2], Iter [283/3125], train_loss:0.143663
Epoch [1/2], Iter [284/3125], train_loss:0.152524
Epoch [1/2], Iter [285/3125], train_loss:0.147572
Epoch [1/2], Iter [286/3125], train_loss:0.170164
Epoch [1/2], Iter [287/3125], train_loss:0.139357
Epoch [1/2], Iter [288/3125], train_loss:0.137447
Epoch [1/2], Iter [289/3125], train_loss:0.153944
Epoch [1/2], Iter [290/3125], train_loss:0.120008
Epoch [1/2], Iter [291/3125], train_loss:0.125603
Epoch [1/2], Iter [292/3125], train_loss:0.169415
Epoch [1/2], Iter [293/3125], train_loss:0.156042
Epoch [1/2], Iter [294/3125], train_loss:0.140195
Epoch [1/2], Iter [295/3125], train_loss:0.102234
Epoch [1/2], Iter [296/3125], train_loss:0.133909
Epoch [1/2], Iter [297/3125], train_loss:0.139474
Epoch [1/2], Iter [298/3125], train_loss:0.162286
Epoch [1/2], Iter [299/3125], train_loss:0.151964
Epoch [1/2], Iter [300/3125], train_loss:0.155396
Epoch [1/2], Iter [301/3125], train_loss:0.137973
Epoch [1/2], Iter [302/3125], train_loss:0.161529
Epoch [1/2], Iter [303/3125], train_loss:0.137485
Epoch [1/2], Iter [304/3125], train_loss:0.134958
Epoch [1/2], Iter [305/3125], train_loss:0.151537
Epoch [1/2], Iter [306/3125], train_loss:0.115637
Epoch [1/2], Iter [307/3125], train_loss:0.146324
Epoch [1/2], Iter [308/3125], train_loss:0.135304
Epoch [1/2], Iter [309/3125], train_loss:0.161564
Epoch [1/2], Iter [310/3125], train_loss:0.140648
Epoch [1/2], Iter [311/3125], train_loss:0.165383
Epoch [1/2], Iter [312/3125], train_loss:0.171503
Epoch [1/2], Iter [313/3125], train_loss:0.128425
Epoch [1/2], Iter [314/3125], train_loss:0.137095
Epoch [1/2], Iter [315/3125], train_loss:0.147743
Epoch [1/2], Iter [316/3125], train_loss:0.136319
Epoch [1/2], Iter [317/3125], train_loss:0.140118
Epoch [1/2], Iter [318/3125], train_loss:0.129867
Epoch [1/2], Iter [319/3125], train_loss:0.140588
Epoch [1/2], Iter [320/3125], train_loss:0.140786
Epoch [1/2], Iter [321/3125], train_loss:0.131588
Epoch [1/2], Iter [322/3125], train_loss:0.118686
Epoch [1/2], Iter [323/3125], train_loss:0.145970
Epoch [1/2], Iter [324/3125], train_loss:0.144447
Epoch [1/2], Iter [325/3125], train_loss:0.140250
Epoch [1/2], Iter [326/3125], train_loss:0.144189
Epoch [1/2], Iter [327/3125], train_loss:0.151661
Epoch [1/2], Iter [328/3125], train_loss:0.153539
Epoch [1/2], Iter [329/3125], train_loss:0.161170
Epoch [1/2], Iter [330/3125], train_loss:0.135300
Epoch [1/2], Iter [331/3125], train_loss:0.123458
Epoch [1/2], Iter [332/3125], train_loss:0.139802
Epoch [1/2], Iter [333/3125], train_loss:0.169329
Epoch [1/2], Iter [334/3125], train_loss:0.145734
Epoch [1/2], Iter [335/3125], train_loss:0.184645
Epoch [1/2], Iter [336/3125], train_loss:0.138695
Epoch [1/2], Iter [337/3125], train_loss:0.121887
Epoch [1/2], Iter [338/3125], train_loss:0.131833
Epoch [1/2], Iter [339/3125], train_loss:0.154317
Epoch [1/2], Iter [340/3125], train_loss:0.131791
Epoch [1/2], Iter [341/3125], train_loss:0.111341
Epoch [1/2], Iter [342/3125], train_loss:0.123395
Epoch [1/2], Iter [343/3125], train_loss:0.161068
Epoch [1/2], Iter [344/3125], train_loss:0.138011
Epoch [1/2], Iter [345/3125], train_loss:0.172757
Epoch [1/2], Iter [346/3125], train_loss:0.141580
Epoch [1/2], Iter [347/3125], train_loss:0.144634
Epoch [1/2], Iter [348/3125], train_loss:0.133607
Epoch [1/2], Iter [349/3125], train_loss:0.151957
Epoch [1/2], Iter [350/3125], train_loss:0.153514
Epoch [1/2], Iter [351/3125], train_loss:0.132827
Epoch [1/2], Iter [352/3125], train_loss:0.165424
Epoch [1/2], Iter [353/3125], train_loss:0.151765
Epoch [1/2], Iter [354/3125], train_loss:0.123370
Epoch [1/2], Iter [355/3125], train_loss:0.133170
Epoch [1/2], Iter [356/3125], train_loss:0.134136
Epoch [1/2], Iter [357/3125], train_loss:0.134728
Epoch [1/2], Iter [358/3125], train_loss:0.130462
Epoch [1/2], Iter [359/3125], train_loss:0.140449
Epoch [1/2], Iter [360/3125], train_loss:0.115743
Epoch [1/2], Iter [361/3125], train_loss:0.135062
Epoch [1/2], Iter [362/3125], train_loss:0.170707
Epoch [1/2], Iter [363/3125], train_loss:0.125737
Epoch [1/2], Iter [364/3125], train_loss:0.144514
Epoch [1/2], Iter [365/3125], train_loss:0.167388
Epoch [1/2], Iter [366/3125], train_loss:0.136096
Epoch [1/2], Iter [367/3125], train_loss:0.150182
Epoch [1/2], Iter [368/3125], train_loss:0.173576
Epoch [1/2], Iter [369/3125], train_loss:0.129492
Epoch [1/2], Iter [370/3125], train_loss:0.142063
Epoch [1/2], Iter [371/3125], train_loss:0.103541
Epoch [1/2], Iter [372/3125], train_loss:0.156505
Epoch [1/2], Iter [373/3125], train_loss:0.154902
Epoch [1/2], Iter [374/3125], train_loss:0.115977
Epoch [1/2], Iter [375/3125], train_loss:0.119252
Epoch [1/2], Iter [376/3125], train_loss:0.171216
Epoch [1/2], Iter [377/3125], train_loss:0.132563
Epoch [1/2], Iter [378/3125], train_loss:0.118892
Epoch [1/2], Iter [379/3125], train_loss:0.114120
Epoch [1/2], Iter [380/3125], train_loss:0.133102
Epoch [1/2], Iter [381/3125], train_loss:0.148668
Epoch [1/2], Iter [382/3125], train_loss:0.088364
Epoch [1/2], Iter [383/3125], train_loss:0.139797
Epoch [1/2], Iter [384/3125], train_loss:0.109467
Epoch [1/2], Iter [385/3125], train_loss:0.120487
Epoch [1/2], Iter [386/3125], train_loss:0.129980
Epoch [1/2], Iter [387/3125], train_loss:0.133831
Epoch [1/2], Iter [388/3125], train_loss:0.129084
Epoch [1/2], Iter [389/3125], train_loss:0.143751
Epoch [1/2], Iter [390/3125], train_loss:0.145588
Epoch [1/2], Iter [391/3125], train_loss:0.141514
Epoch [1/2], Iter [392/3125], train_loss:0.134764
Epoch [1/2], Iter [393/3125], train_loss:0.135487
Epoch [1/2], Iter [394/3125], train_loss:0.158167
Epoch [1/2], Iter [395/3125], train_loss:0.128908
Epoch [1/2], Iter [396/3125], train_loss:0.104820
Epoch [1/2], Iter [397/3125], train_loss:0.126803
Epoch [1/2], Iter [398/3125], train_loss:0.119977
Epoch [1/2], Iter [399/3125], train_loss:0.167593
Epoch [1/2], Iter [400/3125], train_loss:0.120910
Epoch [1/2], Iter [401/3125], train_loss:0.133739
Epoch [1/2], Iter [402/3125], train_loss:0.143254
Epoch [1/2], Iter [403/3125], train_loss:0.128983
Epoch [1/2], Iter [404/3125], train_loss:0.148489
Epoch [1/2], Iter [405/3125], train_loss:0.138134
Epoch [1/2], Iter [406/3125], train_loss:0.159901
Epoch [1/2], Iter [407/3125], train_loss:0.116905
Epoch [1/2], Iter [408/3125], train_loss:0.131004
Epoch [1/2], Iter [409/3125], train_loss:0.128001
Epoch [1/2], Iter [410/3125], train_loss:0.126740
Epoch [1/2], Iter [411/3125], train_loss:0.132924
Epoch [1/2], Iter [412/3125], train_loss:0.131834
Epoch [1/2], Iter [413/3125], train_loss:0.124082
Epoch [1/2], Iter [414/3125], train_loss:0.141766
Epoch [1/2], Iter [415/3125], train_loss:0.146525
Epoch [1/2], Iter [416/3125], train_loss:0.174883
Epoch [1/2], Iter [417/3125], train_loss:0.154470
Epoch [1/2], Iter [418/3125], train_loss:0.130960
Epoch [1/2], Iter [419/3125], train_loss:0.146512
Epoch [1/2], Iter [420/3125], train_loss:0.133668
Epoch [1/2], Iter [421/3125], train_loss:0.165243
Epoch [1/2], Iter [422/3125], train_loss:0.132538
Epoch [1/2], Iter [423/3125], train_loss:0.115865
Epoch [1/2], Iter [424/3125], train_loss:0.134251
Epoch [1/2], Iter [425/3125], train_loss:0.144921
Epoch [1/2], Iter [426/3125], train_loss:0.128650
Epoch [1/2], Iter [427/3125], train_loss:0.124390
Epoch [1/2], Iter [428/3125], train_loss:0.120808
Epoch [1/2], Iter [429/3125], train_loss:0.117466
Epoch [1/2], Iter [430/3125], train_loss:0.133278
Epoch [1/2], Iter [431/3125], train_loss:0.121746
Epoch [1/2], Iter [432/3125], train_loss:0.124647
Epoch [1/2], Iter [433/3125], train_loss:0.115997
Epoch [1/2], Iter [434/3125], train_loss:0.135611
Epoch [1/2], Iter [435/3125], train_loss:0.149327
Epoch [1/2], Iter [436/3125], train_loss:0.113214
Epoch [1/2], Iter [437/3125], train_loss:0.152793
Epoch [1/2], Iter [438/3125], train_loss:0.158480
Epoch [1/2], Iter [439/3125], train_loss:0.116453
Epoch [1/2], Iter [440/3125], train_loss:0.127663
Epoch [1/2], Iter [441/3125], train_loss:0.140036
Epoch [1/2], Iter [442/3125], train_loss:0.166923
Epoch [1/2], Iter [443/3125], train_loss:0.120091
Epoch [1/2], Iter [444/3125], train_loss:0.153006
Epoch [1/2], Iter [445/3125], train_loss:0.150299
Epoch [1/2], Iter [446/3125], train_loss:0.117065
Epoch [1/2], Iter [447/3125], train_loss:0.124862
Epoch [1/2], Iter [448/3125], train_loss:0.138539
Epoch [1/2], Iter [449/3125], train_loss:0.130323
Epoch [1/2], Iter [450/3125], train_loss:0.144418
Epoch [1/2], Iter [451/3125], train_loss:0.133128
Epoch [1/2], Iter [452/3125], train_loss:0.154379
Epoch [1/2], Iter [453/3125], train_loss:0.131493
Epoch [1/2], Iter [454/3125], train_loss:0.150599
Epoch [1/2], Iter [455/3125], train_loss:0.121932
Epoch [1/2], Iter [456/3125], train_loss:0.094283
Epoch [1/2], Iter [457/3125], train_loss:0.106184
Epoch [1/2], Iter [458/3125], train_loss:0.155492
Epoch [1/2], Iter [459/3125], train_loss:0.149853
Epoch [1/2], Iter [460/3125], train_loss:0.159567
Epoch [1/2], Iter [461/3125], train_loss:0.142336
Epoch [1/2], Iter [462/3125], train_loss:0.120529
Epoch [1/2], Iter [463/3125], train_loss:0.178071
Epoch [1/2], Iter [464/3125], train_loss:0.138046
Epoch [1/2], Iter [465/3125], train_loss:0.136128
Epoch [1/2], Iter [466/3125], train_loss:0.137083
Epoch [1/2], Iter [467/3125], train_loss:0.092409
Epoch [1/2], Iter [468/3125], train_loss:0.154618
Epoch [1/2], Iter [469/3125], train_loss:0.119423
Epoch [1/2], Iter [470/3125], train_loss:0.141376
Epoch [1/2], Iter [471/3125], train_loss:0.144068
Epoch [1/2], Iter [472/3125], train_loss:0.152115
Epoch [1/2], Iter [473/3125], train_loss:0.138435
Epoch [1/2], Iter [474/3125], train_loss:0.111454
Epoch [1/2], Iter [475/3125], train_loss:0.127410
Epoch [1/2], Iter [476/3125], train_loss:0.141480
Epoch [1/2], Iter [477/3125], train_loss:0.118547
Epoch [1/2], Iter [478/3125], train_loss:0.116395
Epoch [1/2], Iter [479/3125], train_loss:0.131320
Epoch [1/2], Iter [480/3125], train_loss:0.135318
Epoch [1/2], Iter [481/3125], train_loss:0.130523
Epoch [1/2], Iter [482/3125], train_loss:0.113823
Epoch [1/2], Iter [483/3125], train_loss:0.145352
Epoch [1/2], Iter [484/3125], train_loss:0.114676
Epoch [1/2], Iter [485/3125], train_loss:0.118694
Epoch [1/2], Iter [486/3125], train_loss:0.155633
Epoch [1/2], Iter [487/3125], train_loss:0.154376
Epoch [1/2], Iter [488/3125], train_loss:0.150709
Epoch [1/2], Iter [489/3125], train_loss:0.140641
Epoch [1/2], Iter [490/3125], train_loss:0.113311
Epoch [1/2], Iter [491/3125], train_loss:0.125240
Epoch [1/2], Iter [492/3125], train_loss:0.165419
Epoch [1/2], Iter [493/3125], train_loss:0.126591
Epoch [1/2], Iter [494/3125], train_loss:0.135375
Epoch [1/2], Iter [495/3125], train_loss:0.108825
Epoch [1/2], Iter [496/3125], train_loss:0.146182
Epoch [1/2], Iter [497/3125], train_loss:0.145437
Epoch [1/2], Iter [498/3125], train_loss:0.125500
Epoch [1/2], Iter [499/3125], train_loss:0.115408
Epoch [1/2], Iter [500/3125], train_loss:0.158740
Epoch [1/2], Iter [501/3125], train_loss:0.138249
Epoch [1/2], Iter [502/3125], train_loss:0.126816
Epoch [1/2], Iter [503/3125], train_loss:0.147844
Epoch [1/2], Iter [504/3125], train_loss:0.128878
Epoch [1/2], Iter [505/3125], train_loss:0.114013
Epoch [1/2], Iter [506/3125], train_loss:0.160102
Epoch [1/2], Iter [507/3125], train_loss:0.151201
Epoch [1/2], Iter [508/3125], train_loss:0.149264
Epoch [1/2], Iter [509/3125], train_loss:0.159143
Epoch [1/2], Iter [510/3125], train_loss:0.142965
Epoch [1/2], Iter [511/3125], train_loss:0.138246
Epoch [1/2], Iter [512/3125], train_loss:0.124573
Epoch [1/2], Iter [513/3125], train_loss:0.148881
Epoch [1/2], Iter [514/3125], train_loss:0.149671
Epoch [1/2], Iter [515/3125], train_loss:0.140685
Epoch [1/2], Iter [516/3125], train_loss:0.143477
Epoch [1/2], Iter [517/3125], train_loss:0.116682
Epoch [1/2], Iter [518/3125], train_loss:0.140594
Epoch [1/2], Iter [519/3125], train_loss:0.126693
Epoch [1/2], Iter [520/3125], train_loss:0.131504
Epoch [1/2], Iter [521/3125], train_loss:0.152126
Epoch [1/2], Iter [522/3125], train_loss:0.152904
Epoch [1/2], Iter [523/3125], train_loss:0.146042
Epoch [1/2], Iter [524/3125], train_loss:0.128854
Epoch [1/2], Iter [525/3125], train_loss:0.123463
Epoch [1/2], Iter [526/3125], train_loss:0.130197
Epoch [1/2], Iter [527/3125], train_loss:0.153066
Epoch [1/2], Iter [528/3125], train_loss:0.165717
Epoch [1/2], Iter [529/3125], train_loss:0.165995
Epoch [1/2], Iter [530/3125], train_loss:0.130012
Epoch [1/2], Iter [531/3125], train_loss:0.124241
Epoch [1/2], Iter [532/3125], train_loss:0.126753
Epoch [1/2], Iter [533/3125], train_loss:0.141608
Epoch [1/2], Iter [534/3125], train_loss:0.130609
Epoch [1/2], Iter [535/3125], train_loss:0.140055
Epoch [1/2], Iter [536/3125], train_loss:0.141104
Epoch [1/2], Iter [537/3125], train_loss:0.129899
Epoch [1/2], Iter [538/3125], train_loss:0.152887
Epoch [1/2], Iter [539/3125], train_loss:0.147007
Epoch [1/2], Iter [540/3125], train_loss:0.140103
Epoch [1/2], Iter [541/3125], train_loss:0.123520
Epoch [1/2], Iter [542/3125], train_loss:0.158599
Epoch [1/2], Iter [543/3125], train_loss:0.147246
Epoch [1/2], Iter [544/3125], train_loss:0.118494
Epoch [1/2], Iter [545/3125], train_loss:0.140509
Epoch [1/2], Iter [546/3125], train_loss:0.155537
Epoch [1/2], Iter [547/3125], train_loss:0.164005
Epoch [1/2], Iter [548/3125], train_loss:0.124733
Epoch [1/2], Iter [549/3125], train_loss:0.143991
Epoch [1/2], Iter [550/3125], train_loss:0.166835
Epoch [1/2], Iter [551/3125], train_loss:0.131719
Epoch [1/2], Iter [552/3125], train_loss:0.123733
Epoch [1/2], Iter [553/3125], train_loss:0.114212
Epoch [1/2], Iter [554/3125], train_loss:0.131926
Epoch [1/2], Iter [555/3125], train_loss:0.126556
Epoch [1/2], Iter [556/3125], train_loss:0.127504
Epoch [1/2], Iter [557/3125], train_loss:0.127208
Epoch [1/2], Iter [558/3125], train_loss:0.117759
Epoch [1/2], Iter [559/3125], train_loss:0.115209
Epoch [1/2], Iter [560/3125], train_loss:0.114480
Epoch [1/2], Iter [561/3125], train_loss:0.117120
Epoch [1/2], Iter [562/3125], train_loss:0.114013
Epoch [1/2], Iter [563/3125], train_loss:0.149527
Epoch [1/2], Iter [564/3125], train_loss:0.128044
Epoch [1/2], Iter [565/3125], train_loss:0.150191
Epoch [1/2], Iter [566/3125], train_loss:0.120650
Epoch [1/2], Iter [567/3125], train_loss:0.131659
Epoch [1/2], Iter [568/3125], train_loss:0.122520
Epoch [1/2], Iter [569/3125], train_loss:0.121531
Epoch [1/2], Iter [570/3125], train_loss:0.129412
Epoch [1/2], Iter [571/3125], train_loss:0.135542
Epoch [1/2], Iter [572/3125], train_loss:0.138364
Epoch [1/2], Iter [573/3125], train_loss:0.107364
Epoch [1/2], Iter [574/3125], train_loss:0.184996
Epoch [1/2], Iter [575/3125], train_loss:0.139788
Epoch [1/2], Iter [576/3125], train_loss:0.149737
Epoch [1/2], Iter [577/3125], train_loss:0.158352
Epoch [1/2], Iter [578/3125], train_loss:0.182812
Epoch [1/2], Iter [579/3125], train_loss:0.131087
Epoch [1/2], Iter [580/3125], train_loss:0.128033
Epoch [1/2], Iter [581/3125], train_loss:0.118134
Epoch [1/2], Iter [582/3125], train_loss:0.121347
Epoch [1/2], Iter [583/3125], train_loss:0.111557
Epoch [1/2], Iter [584/3125], train_loss:0.120800
Epoch [1/2], Iter [585/3125], train_loss:0.138530
Epoch [1/2], Iter [586/3125], train_loss:0.135671
Epoch [1/2], Iter [587/3125], train_loss:0.130564
Epoch [1/2], Iter [588/3125], train_loss:0.123875
Epoch [1/2], Iter [589/3125], train_loss:0.131736
Epoch [1/2], Iter [590/3125], train_loss:0.119891
Epoch [1/2], Iter [591/3125], train_loss:0.128502
Epoch [1/2], Iter [592/3125], train_loss:0.125160
Epoch [1/2], Iter [593/3125], train_loss:0.129433
Epoch [1/2], Iter [594/3125], train_loss:0.149174
Epoch [1/2], Iter [595/3125], train_loss:0.148517
Epoch [1/2], Iter [596/3125], train_loss:0.129449
Epoch [1/2], Iter [597/3125], train_loss:0.140851
Epoch [1/2], Iter [598/3125], train_loss:0.127634
Epoch [1/2], Iter [599/3125], train_loss:0.112851
Epoch [1/2], Iter [600/3125], train_loss:0.132988
Epoch [1/2], Iter [601/3125], train_loss:0.125265
Epoch [1/2], Iter [602/3125], train_loss:0.123876
Epoch [1/2], Iter [603/3125], train_loss:0.130467
Epoch [1/2], Iter [604/3125], train_loss:0.129104
Epoch [1/2], Iter [605/3125], train_loss:0.117449
Epoch [1/2], Iter [606/3125], train_loss:0.117107
Epoch [1/2], Iter [607/3125], train_loss:0.119481
Epoch [1/2], Iter [608/3125], train_loss:0.127336
Epoch [1/2], Iter [609/3125], train_loss:0.120863
Epoch [1/2], Iter [610/3125], train_loss:0.129567
Epoch [1/2], Iter [611/3125], train_loss:0.105349
Epoch [1/2], Iter [612/3125], train_loss:0.115262
Epoch [1/2], Iter [613/3125], train_loss:0.114055
Epoch [1/2], Iter [614/3125], train_loss:0.088257
Epoch [1/2], Iter [615/3125], train_loss:0.132848
Epoch [1/2], Iter [616/3125], train_loss:0.147668
Epoch [1/2], Iter [617/3125], train_loss:0.138724
Epoch [1/2], Iter [618/3125], train_loss:0.143088
Epoch [1/2], Iter [619/3125], train_loss:0.120917
Epoch [1/2], Iter [620/3125], train_loss:0.135376
Epoch [1/2], Iter [621/3125], train_loss:0.108191
Epoch [1/2], Iter [622/3125], train_loss:0.130458
Epoch [1/2], Iter [623/3125], train_loss:0.120811
Epoch [1/2], Iter [624/3125], train_loss:0.157672
Epoch [1/2], Iter [625/3125], train_loss:0.140236
Epoch [1/2], Iter [626/3125], train_loss:0.129262
Epoch [1/2], Iter [627/3125], train_loss:0.154512
Epoch [1/2], Iter [628/3125], train_loss:0.135774
Epoch [1/2], Iter [629/3125], train_loss:0.117041
Epoch [1/2], Iter [630/3125], train_loss:0.134066
Epoch [1/2], Iter [631/3125], train_loss:0.136478
Epoch [1/2], Iter [632/3125], train_loss:0.125146
Epoch [1/2], Iter [633/3125], train_loss:0.128133
Epoch [1/2], Iter [634/3125], train_loss:0.159892
Epoch [1/2], Iter [635/3125], train_loss:0.144542
Epoch [1/2], Iter [636/3125], train_loss:0.174141
Epoch [1/2], Iter [637/3125], train_loss:0.099209
Epoch [1/2], Iter [638/3125], train_loss:0.123207
Epoch [1/2], Iter [639/3125], train_loss:0.108200
Epoch [1/2], Iter [640/3125], train_loss:0.150231
Epoch [1/2], Iter [641/3125], train_loss:0.140358
Epoch [1/2], Iter [642/3125], train_loss:0.129246
Epoch [1/2], Iter [643/3125], train_loss:0.119049
Epoch [1/2], Iter [644/3125], train_loss:0.119448
Epoch [1/2], Iter [645/3125], train_loss:0.130537
Epoch [1/2], Iter [646/3125], train_loss:0.133798
Epoch [1/2], Iter [647/3125], train_loss:0.132481
Epoch [1/2], Iter [648/3125], train_loss:0.133250
Epoch [1/2], Iter [649/3125], train_loss:0.104661
Epoch [1/2], Iter [650/3125], train_loss:0.152993
Epoch [1/2], Iter [651/3125], train_loss:0.119652
Epoch [1/2], Iter [652/3125], train_loss:0.128239
Epoch [1/2], Iter [653/3125], train_loss:0.132214
Epoch [1/2], Iter [654/3125], train_loss:0.129251
Epoch [1/2], Iter [655/3125], train_loss:0.149047
Epoch [1/2], Iter [656/3125], train_loss:0.153654
Epoch [1/2], Iter [657/3125], train_loss:0.133315
Epoch [1/2], Iter [658/3125], train_loss:0.128164
Epoch [1/2], Iter [659/3125], train_loss:0.134112
Epoch [1/2], Iter [660/3125], train_loss:0.103687
Epoch [1/2], Iter [661/3125], train_loss:0.125754
Epoch [1/2], Iter [662/3125], train_loss:0.132972
Epoch [1/2], Iter [663/3125], train_loss:0.153800
Epoch [1/2], Iter [664/3125], train_loss:0.110952
Epoch [1/2], Iter [665/3125], train_loss:0.120236
Epoch [1/2], Iter [666/3125], train_loss:0.115589
Epoch [1/2], Iter [667/3125], train_loss:0.132908
Epoch [1/2], Iter [668/3125], train_loss:0.159913
Epoch [1/2], Iter [669/3125], train_loss:0.131979
Epoch [1/2], Iter [670/3125], train_loss:0.136179
Epoch [1/2], Iter [671/3125], train_loss:0.131732
Epoch [1/2], Iter [672/3125], train_loss:0.106427
Epoch [1/2], Iter [673/3125], train_loss:0.094495
Epoch [1/2], Iter [674/3125], train_loss:0.139270
Epoch [1/2], Iter [675/3125], train_loss:0.148814
Epoch [1/2], Iter [676/3125], train_loss:0.121234
Epoch [1/2], Iter [677/3125], train_loss:0.135534
Epoch [1/2], Iter [678/3125], train_loss:0.163135
Epoch [1/2], Iter [679/3125], train_loss:0.143060
Epoch [1/2], Iter [680/3125], train_loss:0.125081
Epoch [1/2], Iter [681/3125], train_loss:0.129806
Epoch [1/2], Iter [682/3125], train_loss:0.122023
Epoch [1/2], Iter [683/3125], train_loss:0.134073
Epoch [1/2], Iter [684/3125], train_loss:0.134897
Epoch [1/2], Iter [685/3125], train_loss:0.106832
Epoch [1/2], Iter [686/3125], train_loss:0.111320
Epoch [1/2], Iter [687/3125], train_loss:0.103270
Epoch [1/2], Iter [688/3125], train_loss:0.126575
Epoch [1/2], Iter [689/3125], train_loss:0.146058
Epoch [1/2], Iter [690/3125], train_loss:0.122028
Epoch [1/2], Iter [691/3125], train_loss:0.111225
Epoch [1/2], Iter [692/3125], train_loss:0.133752
Epoch [1/2], Iter [693/3125], train_loss:0.147082
Epoch [1/2], Iter [694/3125], train_loss:0.152503
Epoch [1/2], Iter [695/3125], train_loss:0.140419
Epoch [1/2], Iter [696/3125], train_loss:0.105214
Epoch [1/2], Iter [697/3125], train_loss:0.101332
Epoch [1/2], Iter [698/3125], train_loss:0.119881
Epoch [1/2], Iter [699/3125], train_loss:0.139052
Epoch [1/2], Iter [700/3125], train_loss:0.130664
Epoch [1/2], Iter [701/3125], train_loss:0.139796
Epoch [1/2], Iter [702/3125], train_loss:0.144576
Epoch [1/2], Iter [703/3125], train_loss:0.148382
Epoch [1/2], Iter [704/3125], train_loss:0.155544
Epoch [1/2], Iter [705/3125], train_loss:0.124624
Epoch [1/2], Iter [706/3125], train_loss:0.129485
Epoch [1/2], Iter [707/3125], train_loss:0.112410
Epoch [1/2], Iter [708/3125], train_loss:0.117666
Epoch [1/2], Iter [709/3125], train_loss:0.123164
Epoch [1/2], Iter [710/3125], train_loss:0.118641
Epoch [1/2], Iter [711/3125], train_loss:0.126330
Epoch [1/2], Iter [712/3125], train_loss:0.149150
Epoch [1/2], Iter [713/3125], train_loss:0.136890
Epoch [1/2], Iter [714/3125], train_loss:0.138514
Epoch [1/2], Iter [715/3125], train_loss:0.135200
Epoch [1/2], Iter [716/3125], train_loss:0.162493
Epoch [1/2], Iter [717/3125], train_loss:0.124913
Epoch [1/2], Iter [718/3125], train_loss:0.136156
Epoch [1/2], Iter [719/3125], train_loss:0.124643
Epoch [1/2], Iter [720/3125], train_loss:0.111680
Epoch [1/2], Iter [721/3125], train_loss:0.142082
Epoch [1/2], Iter [722/3125], train_loss:0.125173
Epoch [1/2], Iter [723/3125], train_loss:0.155997
Epoch [1/2], Iter [724/3125], train_loss:0.130297
Epoch [1/2], Iter [725/3125], train_loss:0.118000
Epoch [1/2], Iter [726/3125], train_loss:0.121535
Epoch [1/2], Iter [727/3125], train_loss:0.132659
Epoch [1/2], Iter [728/3125], train_loss:0.147112
Epoch [1/2], Iter [729/3125], train_loss:0.127118
Epoch [1/2], Iter [730/3125], train_loss:0.117182
Epoch [1/2], Iter [731/3125], train_loss:0.131232
Epoch [1/2], Iter [732/3125], train_loss:0.114092
Epoch [1/2], Iter [733/3125], train_loss:0.109745
Epoch [1/2], Iter [734/3125], train_loss:0.145640
Epoch [1/2], Iter [735/3125], train_loss:0.129315
Epoch [1/2], Iter [736/3125], train_loss:0.139311
Epoch [1/2], Iter [737/3125], train_loss:0.144331
Epoch [1/2], Iter [738/3125], train_loss:0.147544
Epoch [1/2], Iter [739/3125], train_loss:0.122015
Epoch [1/2], Iter [740/3125], train_loss:0.118138
Epoch [1/2], Iter [741/3125], train_loss:0.131837
Epoch [1/2], Iter [742/3125], train_loss:0.134231
Epoch [1/2], Iter [743/3125], train_loss:0.107514
Epoch [1/2], Iter [744/3125], train_loss:0.134031
Epoch [1/2], Iter [745/3125], train_loss:0.104138
Epoch [1/2], Iter [746/3125], train_loss:0.137693
Epoch [1/2], Iter [747/3125], train_loss:0.111110
Epoch [1/2], Iter [748/3125], train_loss:0.105632
Epoch [1/2], Iter [749/3125], train_loss:0.107081
Epoch [1/2], Iter [750/3125], train_loss:0.116592
Epoch [1/2], Iter [751/3125], train_loss:0.106551
Epoch [1/2], Iter [752/3125], train_loss:0.125838
Epoch [1/2], Iter [753/3125], train_loss:0.120718
Epoch [1/2], Iter [754/3125], train_loss:0.132687
Epoch [1/2], Iter [755/3125], train_loss:0.151706
Epoch [1/2], Iter [756/3125], train_loss:0.135108
Epoch [1/2], Iter [757/3125], train_loss:0.113648
Epoch [1/2], Iter [758/3125], train_loss:0.110392
Epoch [1/2], Iter [759/3125], train_loss:0.126501
Epoch [1/2], Iter [760/3125], train_loss:0.138877
Epoch [1/2], Iter [761/3125], train_loss:0.133995
Epoch [1/2], Iter [762/3125], train_loss:0.125079
Epoch [1/2], Iter [763/3125], train_loss:0.117826
Epoch [1/2], Iter [764/3125], train_loss:0.116858
Epoch [1/2], Iter [765/3125], train_loss:0.126663
Epoch [1/2], Iter [766/3125], train_loss:0.105839
Epoch [1/2], Iter [767/3125], train_loss:0.131394
Epoch [1/2], Iter [768/3125], train_loss:0.152240
Epoch [1/2], Iter [769/3125], train_loss:0.149760
Epoch [1/2], Iter [770/3125], train_loss:0.138694
Epoch [1/2], Iter [771/3125], train_loss:0.126705
Epoch [1/2], Iter [772/3125], train_loss:0.138881
Epoch [1/2], Iter [773/3125], train_loss:0.101403
Epoch [1/2], Iter [774/3125], train_loss:0.112878
Epoch [1/2], Iter [775/3125], train_loss:0.134290
Epoch [1/2], Iter [776/3125], train_loss:0.148333
Epoch [1/2], Iter [777/3125], train_loss:0.134612
Epoch [1/2], Iter [778/3125], train_loss:0.136959
Epoch [1/2], Iter [779/3125], train_loss:0.120079
Epoch [1/2], Iter [780/3125], train_loss:0.115945
Epoch [1/2], Iter [781/3125], train_loss:0.126110
Epoch [1/2], Iter [782/3125], train_loss:0.129537
Epoch [1/2], Iter [783/3125], train_loss:0.135706
Epoch [1/2], Iter [784/3125], train_loss:0.119200
Epoch [1/2], Iter [785/3125], train_loss:0.149839
Epoch [1/2], Iter [786/3125], train_loss:0.118873
Epoch [1/2], Iter [787/3125], train_loss:0.118077
Epoch [1/2], Iter [788/3125], train_loss:0.125369
Epoch [1/2], Iter [789/3125], train_loss:0.147734
Epoch [1/2], Iter [790/3125], train_loss:0.143367
Epoch [1/2], Iter [791/3125], train_loss:0.110450
Epoch [1/2], Iter [792/3125], train_loss:0.137163
Epoch [1/2], Iter [793/3125], train_loss:0.113366
Epoch [1/2], Iter [794/3125], train_loss:0.119381
Epoch [1/2], Iter [795/3125], train_loss:0.131153
Epoch [1/2], Iter [796/3125], train_loss:0.161323
Epoch [1/2], Iter [797/3125], train_loss:0.125228
Epoch [1/2], Iter [798/3125], train_loss:0.134447
Epoch [1/2], Iter [799/3125], train_loss:0.123386
Epoch [1/2], Iter [800/3125], train_loss:0.116614
Epoch [1/2], Iter [801/3125], train_loss:0.122435
Epoch [1/2], Iter [802/3125], train_loss:0.130789
Epoch [1/2], Iter [803/3125], train_loss:0.120878
Epoch [1/2], Iter [804/3125], train_loss:0.121167
Epoch [1/2], Iter [805/3125], train_loss:0.120995
Epoch [1/2], Iter [806/3125], train_loss:0.104603
Epoch [1/2], Iter [807/3125], train_loss:0.116274
Epoch [1/2], Iter [808/3125], train_loss:0.113488
Epoch [1/2], Iter [809/3125], train_loss:0.139278
Epoch [1/2], Iter [810/3125], train_loss:0.133202
Epoch [1/2], Iter [811/3125], train_loss:0.142533
Epoch [1/2], Iter [812/3125], train_loss:0.140460
Epoch [1/2], Iter [813/3125], train_loss:0.160427
Epoch [1/2], Iter [814/3125], train_loss:0.108846
Epoch [1/2], Iter [815/3125], train_loss:0.102865
Epoch [1/2], Iter [816/3125], train_loss:0.169738
Epoch [1/2], Iter [817/3125], train_loss:0.141982
Epoch [1/2], Iter [818/3125], train_loss:0.120521
Epoch [1/2], Iter [819/3125], train_loss:0.110251
Epoch [1/2], Iter [820/3125], train_loss:0.124580
Epoch [1/2], Iter [821/3125], train_loss:0.120058
Epoch [1/2], Iter [822/3125], train_loss:0.128831
Epoch [1/2], Iter [823/3125], train_loss:0.116302
Epoch [1/2], Iter [824/3125], train_loss:0.126279
Epoch [1/2], Iter [825/3125], train_loss:0.122051
Epoch [1/2], Iter [826/3125], train_loss:0.101408
Epoch [1/2], Iter [827/3125], train_loss:0.133676
Epoch [1/2], Iter [828/3125], train_loss:0.114889
Epoch [1/2], Iter [829/3125], train_loss:0.154637
Epoch [1/2], Iter [830/3125], train_loss:0.110613
Epoch [1/2], Iter [831/3125], train_loss:0.107352
Epoch [1/2], Iter [832/3125], train_loss:0.113590
Epoch [1/2], Iter [833/3125], train_loss:0.127768
Epoch [1/2], Iter [834/3125], train_loss:0.158357
Epoch [1/2], Iter [835/3125], train_loss:0.156968
Epoch [1/2], Iter [836/3125], train_loss:0.139370
Epoch [1/2], Iter [837/3125], train_loss:0.160966
Epoch [1/2], Iter [838/3125], train_loss:0.125671
Epoch [1/2], Iter [839/3125], train_loss:0.130724
Epoch [1/2], Iter [840/3125], train_loss:0.148446
Epoch [1/2], Iter [841/3125], train_loss:0.125982
Epoch [1/2], Iter [842/3125], train_loss:0.139492
Epoch [1/2], Iter [843/3125], train_loss:0.116199
Epoch [1/2], Iter [844/3125], train_loss:0.103395
Epoch [1/2], Iter [845/3125], train_loss:0.154915
Epoch [1/2], Iter [846/3125], train_loss:0.129759
Epoch [1/2], Iter [847/3125], train_loss:0.111957
Epoch [1/2], Iter [848/3125], train_loss:0.097646
Epoch [1/2], Iter [849/3125], train_loss:0.104481
Epoch [1/2], Iter [850/3125], train_loss:0.117910
Epoch [1/2], Iter [851/3125], train_loss:0.111621
Epoch [1/2], Iter [852/3125], train_loss:0.152699
Epoch [1/2], Iter [853/3125], train_loss:0.132153
Epoch [1/2], Iter [854/3125], train_loss:0.096483
Epoch [1/2], Iter [855/3125], train_loss:0.128148
Epoch [1/2], Iter [856/3125], train_loss:0.118850
Epoch [1/2], Iter [857/3125], train_loss:0.125999
Epoch [1/2], Iter [858/3125], train_loss:0.128652
Epoch [1/2], Iter [859/3125], train_loss:0.141657
Epoch [1/2], Iter [860/3125], train_loss:0.156710
Epoch [1/2], Iter [861/3125], train_loss:0.117729
Epoch [1/2], Iter [862/3125], train_loss:0.121909
Epoch [1/2], Iter [863/3125], train_loss:0.124577
Epoch [1/2], Iter [864/3125], train_loss:0.121272
Epoch [1/2], Iter [865/3125], train_loss:0.117923
Epoch [1/2], Iter [866/3125], train_loss:0.095200
Epoch [1/2], Iter [867/3125], train_loss:0.140625
Epoch [1/2], Iter [868/3125], train_loss:0.140180
Epoch [1/2], Iter [869/3125], train_loss:0.126693
Epoch [1/2], Iter [870/3125], train_loss:0.133405
Epoch [1/2], Iter [871/3125], train_loss:0.134636
Epoch [1/2], Iter [872/3125], train_loss:0.151266
Epoch [1/2], Iter [873/3125], train_loss:0.154619
Epoch [1/2], Iter [874/3125], train_loss:0.113689
Epoch [1/2], Iter [875/3125], train_loss:0.108087
Epoch [1/2], Iter [876/3125], train_loss:0.128375
Epoch [1/2], Iter [877/3125], train_loss:0.122934
Epoch [1/2], Iter [878/3125], train_loss:0.107065
Epoch [1/2], Iter [879/3125], train_loss:0.116219
Epoch [1/2], Iter [880/3125], train_loss:0.106964
Epoch [1/2], Iter [881/3125], train_loss:0.088776
Epoch [1/2], Iter [882/3125], train_loss:0.137836
Epoch [1/2], Iter [883/3125], train_loss:0.131807
Epoch [1/2], Iter [884/3125], train_loss:0.128496
Epoch [1/2], Iter [885/3125], train_loss:0.124839
Epoch [1/2], Iter [886/3125], train_loss:0.159529
Epoch [1/2], Iter [887/3125], train_loss:0.131784
Epoch [1/2], Iter [888/3125], train_loss:0.102921
Epoch [1/2], Iter [889/3125], train_loss:0.127691
Epoch [1/2], Iter [890/3125], train_loss:0.143522
Epoch [1/2], Iter [891/3125], train_loss:0.112422
Epoch [1/2], Iter [892/3125], train_loss:0.116074
Epoch [1/2], Iter [893/3125], train_loss:0.125603
Epoch [1/2], Iter [894/3125], train_loss:0.129154
Epoch [1/2], Iter [895/3125], train_loss:0.098535
Epoch [1/2], Iter [896/3125], train_loss:0.113325
Epoch [1/2], Iter [897/3125], train_loss:0.128097
Epoch [1/2], Iter [898/3125], train_loss:0.113959
Epoch [1/2], Iter [899/3125], train_loss:0.121583
Epoch [1/2], Iter [900/3125], train_loss:0.126774
Epoch [1/2], Iter [901/3125], train_loss:0.131767
Epoch [1/2], Iter [902/3125], train_loss:0.128037
Epoch [1/2], Iter [903/3125], train_loss:0.133310
Epoch [1/2], Iter [904/3125], train_loss:0.111954
Epoch [1/2], Iter [905/3125], train_loss:0.151881
Epoch [1/2], Iter [906/3125], train_loss:0.116905
Epoch [1/2], Iter [907/3125], train_loss:0.115108
Epoch [1/2], Iter [908/3125], train_loss:0.113878
Epoch [1/2], Iter [909/3125], train_loss:0.153626
Epoch [1/2], Iter [910/3125], train_loss:0.101536
Epoch [1/2], Iter [911/3125], train_loss:0.128038
Epoch [1/2], Iter [912/3125], train_loss:0.113910
Epoch [1/2], Iter [913/3125], train_loss:0.132720
Epoch [1/2], Iter [914/3125], train_loss:0.117571
Epoch [1/2], Iter [915/3125], train_loss:0.134915
Epoch [1/2], Iter [916/3125], train_loss:0.142414
Epoch [1/2], Iter [917/3125], train_loss:0.102882
Epoch [1/2], Iter [918/3125], train_loss:0.152961
Epoch [1/2], Iter [919/3125], train_loss:0.130095
Epoch [1/2], Iter [920/3125], train_loss:0.135837
Epoch [1/2], Iter [921/3125], train_loss:0.131806
Epoch [1/2], Iter [922/3125], train_loss:0.106842
Epoch [1/2], Iter [923/3125], train_loss:0.114038
Epoch [1/2], Iter [924/3125], train_loss:0.139136
Epoch [1/2], Iter [925/3125], train_loss:0.119239
Epoch [1/2], Iter [926/3125], train_loss:0.118090
Epoch [1/2], Iter [927/3125], train_loss:0.127306
Epoch [1/2], Iter [928/3125], train_loss:0.128909
Epoch [1/2], Iter [929/3125], train_loss:0.143076
Epoch [1/2], Iter [930/3125], train_loss:0.109327
Epoch [1/2], Iter [931/3125], train_loss:0.141522
Epoch [1/2], Iter [932/3125], train_loss:0.151232
Epoch [1/2], Iter [933/3125], train_loss:0.125747
Epoch [1/2], Iter [934/3125], train_loss:0.138038
Epoch [1/2], Iter [935/3125], train_loss:0.127718
Epoch [1/2], Iter [936/3125], train_loss:0.106390
Epoch [1/2], Iter [937/3125], train_loss:0.092447
Epoch [1/2], Iter [938/3125], train_loss:0.133007
Epoch [1/2], Iter [939/3125], train_loss:0.158318
Epoch [1/2], Iter [940/3125], train_loss:0.150942
Epoch [1/2], Iter [941/3125], train_loss:0.115330
Epoch [1/2], Iter [942/3125], train_loss:0.125420
Epoch [1/2], Iter [943/3125], train_loss:0.133677
Epoch [1/2], Iter [944/3125], train_loss:0.103778
Epoch [1/2], Iter [945/3125], train_loss:0.117114
Epoch [1/2], Iter [946/3125], train_loss:0.138225
Epoch [1/2], Iter [947/3125], train_loss:0.126272
Epoch [1/2], Iter [948/3125], train_loss:0.145278
Epoch [1/2], Iter [949/3125], train_loss:0.119771
Epoch [1/2], Iter [950/3125], train_loss:0.127314
Epoch [1/2], Iter [951/3125], train_loss:0.129742
Epoch [1/2], Iter [952/3125], train_loss:0.145730
Epoch [1/2], Iter [953/3125], train_loss:0.143654
Epoch [1/2], Iter [954/3125], train_loss:0.153971
Epoch [1/2], Iter [955/3125], train_loss:0.129445
Epoch [1/2], Iter [956/3125], train_loss:0.123389
Epoch [1/2], Iter [957/3125], train_loss:0.098573
Epoch [1/2], Iter [958/3125], train_loss:0.136154
Epoch [1/2], Iter [959/3125], train_loss:0.089660
Epoch [1/2], Iter [960/3125], train_loss:0.128614
Epoch [1/2], Iter [961/3125], train_loss:0.108439
Epoch [1/2], Iter [962/3125], train_loss:0.120334
Epoch [1/2], Iter [963/3125], train_loss:0.142910
Epoch [1/2], Iter [964/3125], train_loss:0.119167
Epoch [1/2], Iter [965/3125], train_loss:0.147332
Epoch [1/2], Iter [966/3125], train_loss:0.137831
Epoch [1/2], Iter [967/3125], train_loss:0.135807
Epoch [1/2], Iter [968/3125], train_loss:0.122058
Epoch [1/2], Iter [969/3125], train_loss:0.089618
Epoch [1/2], Iter [970/3125], train_loss:0.130668
Epoch [1/2], Iter [971/3125], train_loss:0.113997
Epoch [1/2], Iter [972/3125], train_loss:0.095872
Epoch [1/2], Iter [973/3125], train_loss:0.130532
Epoch [1/2], Iter [974/3125], train_loss:0.119044
Epoch [1/2], Iter [975/3125], train_loss:0.125105
Epoch [1/2], Iter [976/3125], train_loss:0.122724
Epoch [1/2], Iter [977/3125], train_loss:0.098335
Epoch [1/2], Iter [978/3125], train_loss:0.104454
Epoch [1/2], Iter [979/3125], train_loss:0.133544
Epoch [1/2], Iter [980/3125], train_loss:0.126448
Epoch [1/2], Iter [981/3125], train_loss:0.136839
Epoch [1/2], Iter [982/3125], train_loss:0.152823
Epoch [1/2], Iter [983/3125], train_loss:0.139764
Epoch [1/2], Iter [984/3125], train_loss:0.149529
Epoch [1/2], Iter [985/3125], train_loss:0.120920
Epoch [1/2], Iter [986/3125], train_loss:0.101797
Epoch [1/2], Iter [987/3125], train_loss:0.158799
Epoch [1/2], Iter [988/3125], train_loss:0.113887
Epoch [1/2], Iter [989/3125], train_loss:0.106621
Epoch [1/2], Iter [990/3125], train_loss:0.153951
Epoch [1/2], Iter [991/3125], train_loss:0.136528
Epoch [1/2], Iter [992/3125], train_loss:0.104794
Epoch [1/2], Iter [993/3125], train_loss:0.132386
Epoch [1/2], Iter [994/3125], train_loss:0.110921
Epoch [1/2], Iter [995/3125], train_loss:0.143581
Epoch [1/2], Iter [996/3125], train_loss:0.112366
Epoch [1/2], Iter [997/3125], train_loss:0.150791
Epoch [1/2], Iter [998/3125], train_loss:0.114965
Epoch [1/2], Iter [999/3125], train_loss:0.144281
Epoch [1/2], Iter [1000/3125], train_loss:0.097253
Epoch [1/2], Iter [1001/3125], train_loss:0.107015
Epoch [1/2], Iter [1002/3125], train_loss:0.124313
Epoch [1/2], Iter [1003/3125], train_loss:0.108577
Epoch [1/2], Iter [1004/3125], train_loss:0.134294
Epoch [1/2], Iter [1005/3125], train_loss:0.129103
Epoch [1/2], Iter [1006/3125], train_loss:0.127533
Epoch [1/2], Iter [1007/3125], train_loss:0.114984
Epoch [1/2], Iter [1008/3125], train_loss:0.124624
Epoch [1/2], Iter [1009/3125], train_loss:0.136847
Epoch [1/2], Iter [1010/3125], train_loss:0.122541
Epoch [1/2], Iter [1011/3125], train_loss:0.107556
Epoch [1/2], Iter [1012/3125], train_loss:0.109197
Epoch [1/2], Iter [1013/3125], train_loss:0.119598
Epoch [1/2], Iter [1014/3125], train_loss:0.106924
Epoch [1/2], Iter [1015/3125], train_loss:0.151267
Epoch [1/2], Iter [1016/3125], train_loss:0.142139
Epoch [1/2], Iter [1017/3125], train_loss:0.105546
Epoch [1/2], Iter [1018/3125], train_loss:0.122640
Epoch [1/2], Iter [1019/3125], train_loss:0.122053
Epoch [1/2], Iter [1020/3125], train_loss:0.138856
Epoch [1/2], Iter [1021/3125], train_loss:0.152428
Epoch [1/2], Iter [1022/3125], train_loss:0.121946
Epoch [1/2], Iter [1023/3125], train_loss:0.096853
Epoch [1/2], Iter [1024/3125], train_loss:0.100939
Epoch [1/2], Iter [1025/3125], train_loss:0.132505
Epoch [1/2], Iter [1026/3125], train_loss:0.112318
Epoch [1/2], Iter [1027/3125], train_loss:0.132648
Epoch [1/2], Iter [1028/3125], train_loss:0.135367
Epoch [1/2], Iter [1029/3125], train_loss:0.127595
Epoch [1/2], Iter [1030/3125], train_loss:0.122608
Epoch [1/2], Iter [1031/3125], train_loss:0.125477
Epoch [1/2], Iter [1032/3125], train_loss:0.134335
Epoch [1/2], Iter [1033/3125], train_loss:0.154964
Epoch [1/2], Iter [1034/3125], train_loss:0.150042
Epoch [1/2], Iter [1035/3125], train_loss:0.133856
Epoch [1/2], Iter [1036/3125], train_loss:0.116784
Epoch [1/2], Iter [1037/3125], train_loss:0.102079
Epoch [1/2], Iter [1038/3125], train_loss:0.134110
Epoch [1/2], Iter [1039/3125], train_loss:0.122395
Epoch [1/2], Iter [1040/3125], train_loss:0.109360
Epoch [1/2], Iter [1041/3125], train_loss:0.142921
Epoch [1/2], Iter [1042/3125], train_loss:0.119808
Epoch [1/2], Iter [1043/3125], train_loss:0.144362
Epoch [1/2], Iter [1044/3125], train_loss:0.121404
Epoch [1/2], Iter [1045/3125], train_loss:0.119871
Epoch [1/2], Iter [1046/3125], train_loss:0.111753
Epoch [1/2], Iter [1047/3125], train_loss:0.106631
Epoch [1/2], Iter [1048/3125], train_loss:0.129624
Epoch [1/2], Iter [1049/3125], train_loss:0.139405
Epoch [1/2], Iter [1050/3125], train_loss:0.146612
Epoch [1/2], Iter [1051/3125], train_loss:0.130812
Epoch [1/2], Iter [1052/3125], train_loss:0.145417
Epoch [1/2], Iter [1053/3125], train_loss:0.124454
Epoch [1/2], Iter [1054/3125], train_loss:0.117862
Epoch [1/2], Iter [1055/3125], train_loss:0.127324
Epoch [1/2], Iter [1056/3125], train_loss:0.097558
Epoch [1/2], Iter [1057/3125], train_loss:0.102088
Epoch [1/2], Iter [1058/3125], train_loss:0.140332
Epoch [1/2], Iter [1059/3125], train_loss:0.148284
Epoch [1/2], Iter [1060/3125], train_loss:0.160273
Epoch [1/2], Iter [1061/3125], train_loss:0.131561
Epoch [1/2], Iter [1062/3125], train_loss:0.136726
Epoch [1/2], Iter [1063/3125], train_loss:0.109466
Epoch [1/2], Iter [1064/3125], train_loss:0.135302
Epoch [1/2], Iter [1065/3125], train_loss:0.122059
Epoch [1/2], Iter [1066/3125], train_loss:0.139268
Epoch [1/2], Iter [1067/3125], train_loss:0.141390
Epoch [1/2], Iter [1068/3125], train_loss:0.110667
Epoch [1/2], Iter [1069/3125], train_loss:0.114104
Epoch [1/2], Iter [1070/3125], train_loss:0.134630
Epoch [1/2], Iter [1071/3125], train_loss:0.133930
Epoch [1/2], Iter [1072/3125], train_loss:0.126191
Epoch [1/2], Iter [1073/3125], train_loss:0.117818
Epoch [1/2], Iter [1074/3125], train_loss:0.114748
Epoch [1/2], Iter [1075/3125], train_loss:0.119137
Epoch [1/2], Iter [1076/3125], train_loss:0.133567
Epoch [1/2], Iter [1077/3125], train_loss:0.129337
Epoch [1/2], Iter [1078/3125], train_loss:0.109689
Epoch [1/2], Iter [1079/3125], train_loss:0.106143
Epoch [1/2], Iter [1080/3125], train_loss:0.102661
Epoch [1/2], Iter [1081/3125], train_loss:0.117610
Epoch [1/2], Iter [1082/3125], train_loss:0.082699
Epoch [1/2], Iter [1083/3125], train_loss:0.111960
Epoch [1/2], Iter [1084/3125], train_loss:0.150622
Epoch [1/2], Iter [1085/3125], train_loss:0.147994
Epoch [1/2], Iter [1086/3125], train_loss:0.127080
Epoch [1/2], Iter [1087/3125], train_loss:0.110065
Epoch [1/2], Iter [1088/3125], train_loss:0.114176
Epoch [1/2], Iter [1089/3125], train_loss:0.113061
Epoch [1/2], Iter [1090/3125], train_loss:0.109248
Epoch [1/2], Iter [1091/3125], train_loss:0.088652
Epoch [1/2], Iter [1092/3125], train_loss:0.176266
Epoch [1/2], Iter [1093/3125], train_loss:0.145318
Epoch [1/2], Iter [1094/3125], train_loss:0.132436
Epoch [1/2], Iter [1095/3125], train_loss:0.143664
Epoch [1/2], Iter [1096/3125], train_loss:0.110644
Epoch [1/2], Iter [1097/3125], train_loss:0.099839
Epoch [1/2], Iter [1098/3125], train_loss:0.125293
Epoch [1/2], Iter [1099/3125], train_loss:0.126372
Epoch [1/2], Iter [1100/3125], train_loss:0.122323
Epoch [1/2], Iter [1101/3125], train_loss:0.107649
Epoch [1/2], Iter [1102/3125], train_loss:0.095684
Epoch [1/2], Iter [1103/3125], train_loss:0.122204
Epoch [1/2], Iter [1104/3125], train_loss:0.104475
Epoch [1/2], Iter [1105/3125], train_loss:0.134337
Epoch [1/2], Iter [1106/3125], train_loss:0.106109
Epoch [1/2], Iter [1107/3125], train_loss:0.117644
Epoch [1/2], Iter [1108/3125], train_loss:0.123394
Epoch [1/2], Iter [1109/3125], train_loss:0.104284
Epoch [1/2], Iter [1110/3125], train_loss:0.122454
Epoch [1/2], Iter [1111/3125], train_loss:0.121269
Epoch [1/2], Iter [1112/3125], train_loss:0.127860
Epoch [1/2], Iter [1113/3125], train_loss:0.144616
Epoch [1/2], Iter [1114/3125], train_loss:0.107651
Epoch [1/2], Iter [1115/3125], train_loss:0.141473
Epoch [1/2], Iter [1116/3125], train_loss:0.125693
Epoch [1/2], Iter [1117/3125], train_loss:0.131396
Epoch [1/2], Iter [1118/3125], train_loss:0.093923
Epoch [1/2], Iter [1119/3125], train_loss:0.134721
Epoch [1/2], Iter [1120/3125], train_loss:0.093752
Epoch [1/2], Iter [1121/3125], train_loss:0.128318
Epoch [1/2], Iter [1122/3125], train_loss:0.130023
Epoch [1/2], Iter [1123/3125], train_loss:0.127883
Epoch [1/2], Iter [1124/3125], train_loss:0.131423
Epoch [1/2], Iter [1125/3125], train_loss:0.121582
Epoch [1/2], Iter [1126/3125], train_loss:0.122645
Epoch [1/2], Iter [1127/3125], train_loss:0.132357
Epoch [1/2], Iter [1128/3125], train_loss:0.127798
Epoch [1/2], Iter [1129/3125], train_loss:0.130915
Epoch [1/2], Iter [1130/3125], train_loss:0.116867
Epoch [1/2], Iter [1131/3125], train_loss:0.117003
Epoch [1/2], Iter [1132/3125], train_loss:0.110279
Epoch [1/2], Iter [1133/3125], train_loss:0.123162
Epoch [1/2], Iter [1134/3125], train_loss:0.129390
Epoch [1/2], Iter [1135/3125], train_loss:0.124176
Epoch [1/2], Iter [1136/3125], train_loss:0.140684
Epoch [1/2], Iter [1137/3125], train_loss:0.128951
Epoch [1/2], Iter [1138/3125], train_loss:0.132136
Epoch [1/2], Iter [1139/3125], train_loss:0.100313
Epoch [1/2], Iter [1140/3125], train_loss:0.125512
Epoch [1/2], Iter [1141/3125], train_loss:0.143357
Epoch [1/2], Iter [1142/3125], train_loss:0.119749
Epoch [1/2], Iter [1143/3125], train_loss:0.089367
Epoch [1/2], Iter [1144/3125], train_loss:0.143185
Epoch [1/2], Iter [1145/3125], train_loss:0.125668
Epoch [1/2], Iter [1146/3125], train_loss:0.102639
Epoch [1/2], Iter [1147/3125], train_loss:0.119610
Epoch [1/2], Iter [1148/3125], train_loss:0.123779
Epoch [1/2], Iter [1149/3125], train_loss:0.100778
Epoch [1/2], Iter [1150/3125], train_loss:0.121607
Epoch [1/2], Iter [1151/3125], train_loss:0.101407
Epoch [1/2], Iter [1152/3125], train_loss:0.135673
Epoch [1/2], Iter [1153/3125], train_loss:0.126425
Epoch [1/2], Iter [1154/3125], train_loss:0.093462
Epoch [1/2], Iter [1155/3125], train_loss:0.126472
Epoch [1/2], Iter [1156/3125], train_loss:0.130557
Epoch [1/2], Iter [1157/3125], train_loss:0.128323
Epoch [1/2], Iter [1158/3125], train_loss:0.130056
Epoch [1/2], Iter [1159/3125], train_loss:0.122581
Epoch [1/2], Iter [1160/3125], train_loss:0.086433
Epoch [1/2], Iter [1161/3125], train_loss:0.107591
Epoch [1/2], Iter [1162/3125], train_loss:0.149391
Epoch [1/2], Iter [1163/3125], train_loss:0.119678
Epoch [1/2], Iter [1164/3125], train_loss:0.108670
Epoch [1/2], Iter [1165/3125], train_loss:0.141502
Epoch [1/2], Iter [1166/3125], train_loss:0.114156
Epoch [1/2], Iter [1167/3125], train_loss:0.104277
Epoch [1/2], Iter [1168/3125], train_loss:0.119293
Epoch [1/2], Iter [1169/3125], train_loss:0.116123
Epoch [1/2], Iter [1170/3125], train_loss:0.107151
Epoch [1/2], Iter [1171/3125], train_loss:0.123827
Epoch [1/2], Iter [1172/3125], train_loss:0.109402
Epoch [1/2], Iter [1173/3125], train_loss:0.106157
Epoch [1/2], Iter [1174/3125], train_loss:0.139650
Epoch [1/2], Iter [1175/3125], train_loss:0.152351
Epoch [1/2], Iter [1176/3125], train_loss:0.112824
Epoch [1/2], Iter [1177/3125], train_loss:0.116996
Epoch [1/2], Iter [1178/3125], train_loss:0.118954
Epoch [1/2], Iter [1179/3125], train_loss:0.106760
Epoch [1/2], Iter [1180/3125], train_loss:0.136774
Epoch [1/2], Iter [1181/3125], train_loss:0.098212
Epoch [1/2], Iter [1182/3125], train_loss:0.133383
Epoch [1/2], Iter [1183/3125], train_loss:0.142688
Epoch [1/2], Iter [1184/3125], train_loss:0.098366
Epoch [1/2], Iter [1185/3125], train_loss:0.138397
Epoch [1/2], Iter [1186/3125], train_loss:0.117988
Epoch [1/2], Iter [1187/3125], train_loss:0.154568
Epoch [1/2], Iter [1188/3125], train_loss:0.118643
Epoch [1/2], Iter [1189/3125], train_loss:0.140750
Epoch [1/2], Iter [1190/3125], train_loss:0.122152
Epoch [1/2], Iter [1191/3125], train_loss:0.126351
Epoch [1/2], Iter [1192/3125], train_loss:0.113274
Epoch [1/2], Iter [1193/3125], train_loss:0.125957
Epoch [1/2], Iter [1194/3125], train_loss:0.113587
Epoch [1/2], Iter [1195/3125], train_loss:0.116307
Epoch [1/2], Iter [1196/3125], train_loss:0.108461
Epoch [1/2], Iter [1197/3125], train_loss:0.132879
Epoch [1/2], Iter [1198/3125], train_loss:0.157118
Epoch [1/2], Iter [1199/3125], train_loss:0.109573
Epoch [1/2], Iter [1200/3125], train_loss:0.086982
Epoch [1/2], Iter [1201/3125], train_loss:0.139072
Epoch [1/2], Iter [1202/3125], train_loss:0.128344
Epoch [1/2], Iter [1203/3125], train_loss:0.110572
Epoch [1/2], Iter [1204/3125], train_loss:0.085608
Epoch [1/2], Iter [1205/3125], train_loss:0.113875
Epoch [1/2], Iter [1206/3125], train_loss:0.111099
Epoch [1/2], Iter [1207/3125], train_loss:0.100557
Epoch [1/2], Iter [1208/3125], train_loss:0.132341
Epoch [1/2], Iter [1209/3125], train_loss:0.116466
Epoch [1/2], Iter [1210/3125], train_loss:0.113626
Epoch [1/2], Iter [1211/3125], train_loss:0.121723
Epoch [1/2], Iter [1212/3125], train_loss:0.104577
Epoch [1/2], Iter [1213/3125], train_loss:0.096895
Epoch [1/2], Iter [1214/3125], train_loss:0.120486
Epoch [1/2], Iter [1215/3125], train_loss:0.107735
Epoch [1/2], Iter [1216/3125], train_loss:0.136918
Epoch [1/2], Iter [1217/3125], train_loss:0.101629
Epoch [1/2], Iter [1218/3125], train_loss:0.110400
Epoch [1/2], Iter [1219/3125], train_loss:0.123551
Epoch [1/2], Iter [1220/3125], train_loss:0.132686
Epoch [1/2], Iter [1221/3125], train_loss:0.105168
Epoch [1/2], Iter [1222/3125], train_loss:0.148806
Epoch [1/2], Iter [1223/3125], train_loss:0.103599
Epoch [1/2], Iter [1224/3125], train_loss:0.102260
Epoch [1/2], Iter [1225/3125], train_loss:0.139908
Epoch [1/2], Iter [1226/3125], train_loss:0.150834
Epoch [1/2], Iter [1227/3125], train_loss:0.074731
Epoch [1/2], Iter [1228/3125], train_loss:0.098475
Epoch [1/2], Iter [1229/3125], train_loss:0.144385
Epoch [1/2], Iter [1230/3125], train_loss:0.121909
Epoch [1/2], Iter [1231/3125], train_loss:0.114415
Epoch [1/2], Iter [1232/3125], train_loss:0.102998
Epoch [1/2], Iter [1233/3125], train_loss:0.130734
Epoch [1/2], Iter [1234/3125], train_loss:0.100877
Epoch [1/2], Iter [1235/3125], train_loss:0.108643
Epoch [1/2], Iter [1236/3125], train_loss:0.140781
Epoch [1/2], Iter [1237/3125], train_loss:0.131204
Epoch [1/2], Iter [1238/3125], train_loss:0.158854
Epoch [1/2], Iter [1239/3125], train_loss:0.127776
Epoch [1/2], Iter [1240/3125], train_loss:0.148763
Epoch [1/2], Iter [1241/3125], train_loss:0.120135
Epoch [1/2], Iter [1242/3125], train_loss:0.120117
Epoch [1/2], Iter [1243/3125], train_loss:0.161515
Epoch [1/2], Iter [1244/3125], train_loss:0.153187
Epoch [1/2], Iter [1245/3125], train_loss:0.130377
Epoch [1/2], Iter [1246/3125], train_loss:0.135746
Epoch [1/2], Iter [1247/3125], train_loss:0.133350
Epoch [1/2], Iter [1248/3125], train_loss:0.146740
Epoch [1/2], Iter [1249/3125], train_loss:0.106535
Epoch [1/2], Iter [1250/3125], train_loss:0.118668
Epoch [1/2], Iter [1251/3125], train_loss:0.131747
Epoch [1/2], Iter [1252/3125], train_loss:0.130888
Epoch [1/2], Iter [1253/3125], train_loss:0.115214
Epoch [1/2], Iter [1254/3125], train_loss:0.135826
Epoch [1/2], Iter [1255/3125], train_loss:0.126973
Epoch [1/2], Iter [1256/3125], train_loss:0.123112
Epoch [1/2], Iter [1257/3125], train_loss:0.116337
Epoch [1/2], Iter [1258/3125], train_loss:0.122621
Epoch [1/2], Iter [1259/3125], train_loss:0.111832
Epoch [1/2], Iter [1260/3125], train_loss:0.104192
Epoch [1/2], Iter [1261/3125], train_loss:0.098209
Epoch [1/2], Iter [1262/3125], train_loss:0.116020
Epoch [1/2], Iter [1263/3125], train_loss:0.124493
Epoch [1/2], Iter [1264/3125], train_loss:0.112971
Epoch [1/2], Iter [1265/3125], train_loss:0.128588
Epoch [1/2], Iter [1266/3125], train_loss:0.110129
Epoch [1/2], Iter [1267/3125], train_loss:0.131274
Epoch [1/2], Iter [1268/3125], train_loss:0.121199
Epoch [1/2], Iter [1269/3125], train_loss:0.125670
Epoch [1/2], Iter [1270/3125], train_loss:0.132897
Epoch [1/2], Iter [1271/3125], train_loss:0.149063
Epoch [1/2], Iter [1272/3125], train_loss:0.094635
Epoch [1/2], Iter [1273/3125], train_loss:0.137337
Epoch [1/2], Iter [1274/3125], train_loss:0.144458
Epoch [1/2], Iter [1275/3125], train_loss:0.112834
Epoch [1/2], Iter [1276/3125], train_loss:0.124261
Epoch [1/2], Iter [1277/3125], train_loss:0.129183
Epoch [1/2], Iter [1278/3125], train_loss:0.161575
Epoch [1/2], Iter [1279/3125], train_loss:0.106391
Epoch [1/2], Iter [1280/3125], train_loss:0.112518
Epoch [1/2], Iter [1281/3125], train_loss:0.110986
Epoch [1/2], Iter [1282/3125], train_loss:0.108414
Epoch [1/2], Iter [1283/3125], train_loss:0.152765
Epoch [1/2], Iter [1284/3125], train_loss:0.121458
Epoch [1/2], Iter [1285/3125], train_loss:0.108105
Epoch [1/2], Iter [1286/3125], train_loss:0.122133
Epoch [1/2], Iter [1287/3125], train_loss:0.119404
Epoch [1/2], Iter [1288/3125], train_loss:0.123093
Epoch [1/2], Iter [1289/3125], train_loss:0.110909
Epoch [1/2], Iter [1290/3125], train_loss:0.115075
Epoch [1/2], Iter [1291/3125], train_loss:0.094410
Epoch [1/2], Iter [1292/3125], train_loss:0.110264
Epoch [1/2], Iter [1293/3125], train_loss:0.146368
Epoch [1/2], Iter [1294/3125], train_loss:0.123814
Epoch [1/2], Iter [1295/3125], train_loss:0.112168
Epoch [1/2], Iter [1296/3125], train_loss:0.102267
Epoch [1/2], Iter [1297/3125], train_loss:0.115881
Epoch [1/2], Iter [1298/3125], train_loss:0.130322
Epoch [1/2], Iter [1299/3125], train_loss:0.131473
Epoch [1/2], Iter [1300/3125], train_loss:0.163199
Epoch [1/2], Iter [1301/3125], train_loss:0.113640
Epoch [1/2], Iter [1302/3125], train_loss:0.127416
Epoch [1/2], Iter [1303/3125], train_loss:0.113280
Epoch [1/2], Iter [1304/3125], train_loss:0.123337
Epoch [1/2], Iter [1305/3125], train_loss:0.091916
Epoch [1/2], Iter [1306/3125], train_loss:0.080357
Epoch [1/2], Iter [1307/3125], train_loss:0.094215
Epoch [1/2], Iter [1308/3125], train_loss:0.110574
Epoch [1/2], Iter [1309/3125], train_loss:0.122407
Epoch [1/2], Iter [1310/3125], train_loss:0.109602
Epoch [1/2], Iter [1311/3125], train_loss:0.092256
Epoch [1/2], Iter [1312/3125], train_loss:0.089961
Epoch [1/2], Iter [1313/3125], train_loss:0.138478
Epoch [1/2], Iter [1314/3125], train_loss:0.130750
Epoch [1/2], Iter [1315/3125], train_loss:0.098626
Epoch [1/2], Iter [1316/3125], train_loss:0.130637
Epoch [1/2], Iter [1317/3125], train_loss:0.113032
Epoch [1/2], Iter [1318/3125], train_loss:0.141212
Epoch [1/2], Iter [1319/3125], train_loss:0.159202
Epoch [1/2], Iter [1320/3125], train_loss:0.104703
Epoch [1/2], Iter [1321/3125], train_loss:0.130061
Epoch [1/2], Iter [1322/3125], train_loss:0.098450
Epoch [1/2], Iter [1323/3125], train_loss:0.118011
Epoch [1/2], Iter [1324/3125], train_loss:0.119083
Epoch [1/2], Iter [1325/3125], train_loss:0.122753
Epoch [1/2], Iter [1326/3125], train_loss:0.110272
Epoch [1/2], Iter [1327/3125], train_loss:0.124699
Epoch [1/2], Iter [1328/3125], train_loss:0.125460
Epoch [1/2], Iter [1329/3125], train_loss:0.120695
Epoch [1/2], Iter [1330/3125], train_loss:0.124485
Epoch [1/2], Iter [1331/3125], train_loss:0.110135
Epoch [1/2], Iter [1332/3125], train_loss:0.107310
Epoch [1/2], Iter [1333/3125], train_loss:0.114968
Epoch [1/2], Iter [1334/3125], train_loss:0.110071
Epoch [1/2], Iter [1335/3125], train_loss:0.103416
Epoch [1/2], Iter [1336/3125], train_loss:0.108320
Epoch [1/2], Iter [1337/3125], train_loss:0.133014
Epoch [1/2], Iter [1338/3125], train_loss:0.112441
Epoch [1/2], Iter [1339/3125], train_loss:0.104479
Epoch [1/2], Iter [1340/3125], train_loss:0.116247
Epoch [1/2], Iter [1341/3125], train_loss:0.130177
Epoch [1/2], Iter [1342/3125], train_loss:0.124418
Epoch [1/2], Iter [1343/3125], train_loss:0.131596
Epoch [1/2], Iter [1344/3125], train_loss:0.148934
Epoch [1/2], Iter [1345/3125], train_loss:0.131297
Epoch [1/2], Iter [1346/3125], train_loss:0.114347
Epoch [1/2], Iter [1347/3125], train_loss:0.105459
Epoch [1/2], Iter [1348/3125], train_loss:0.091900
Epoch [1/2], Iter [1349/3125], train_loss:0.121696
Epoch [1/2], Iter [1350/3125], train_loss:0.135702
Epoch [1/2], Iter [1351/3125], train_loss:0.084750
Epoch [1/2], Iter [1352/3125], train_loss:0.102412
Epoch [1/2], Iter [1353/3125], train_loss:0.136172
Epoch [1/2], Iter [1354/3125], train_loss:0.138000
Epoch [1/2], Iter [1355/3125], train_loss:0.080419
Epoch [1/2], Iter [1356/3125], train_loss:0.115543
Epoch [1/2], Iter [1357/3125], train_loss:0.124386
Epoch [1/2], Iter [1358/3125], train_loss:0.115385
Epoch [1/2], Iter [1359/3125], train_loss:0.127010
Epoch [1/2], Iter [1360/3125], train_loss:0.120455
Epoch [1/2], Iter [1361/3125], train_loss:0.117791
Epoch [1/2], Iter [1362/3125], train_loss:0.152406
Epoch [1/2], Iter [1363/3125], train_loss:0.109988
Epoch [1/2], Iter [1364/3125], train_loss:0.137212
Epoch [1/2], Iter [1365/3125], train_loss:0.104549
Epoch [1/2], Iter [1366/3125], train_loss:0.132258
Epoch [1/2], Iter [1367/3125], train_loss:0.116934
Epoch [1/2], Iter [1368/3125], train_loss:0.090230
Epoch [1/2], Iter [1369/3125], train_loss:0.109976
Epoch [1/2], Iter [1370/3125], train_loss:0.116305
Epoch [1/2], Iter [1371/3125], train_loss:0.124090
Epoch [1/2], Iter [1372/3125], train_loss:0.119928
Epoch [1/2], Iter [1373/3125], train_loss:0.140690
Epoch [1/2], Iter [1374/3125], train_loss:0.101751
Epoch [1/2], Iter [1375/3125], train_loss:0.094104
Epoch [1/2], Iter [1376/3125], train_loss:0.108286
Epoch [1/2], Iter [1377/3125], train_loss:0.100203
Epoch [1/2], Iter [1378/3125], train_loss:0.158961
Epoch [1/2], Iter [1379/3125], train_loss:0.128643
Epoch [1/2], Iter [1380/3125], train_loss:0.117819
Epoch [1/2], Iter [1381/3125], train_loss:0.109645
Epoch [1/2], Iter [1382/3125], train_loss:0.150495
Epoch [1/2], Iter [1383/3125], train_loss:0.115506
Epoch [1/2], Iter [1384/3125], train_loss:0.117302
Epoch [1/2], Iter [1385/3125], train_loss:0.132320
Epoch [1/2], Iter [1386/3125], train_loss:0.117862
Epoch [1/2], Iter [1387/3125], train_loss:0.088007
Epoch [1/2], Iter [1388/3125], train_loss:0.100484
Epoch [1/2], Iter [1389/3125], train_loss:0.152095
Epoch [1/2], Iter [1390/3125], train_loss:0.130487
Epoch [1/2], Iter [1391/3125], train_loss:0.107005
Epoch [1/2], Iter [1392/3125], train_loss:0.153524
Epoch [1/2], Iter [1393/3125], train_loss:0.106606
Epoch [1/2], Iter [1394/3125], train_loss:0.103809
Epoch [1/2], Iter [1395/3125], train_loss:0.112907
Epoch [1/2], Iter [1396/3125], train_loss:0.095083
Epoch [1/2], Iter [1397/3125], train_loss:0.115779
Epoch [1/2], Iter [1398/3125], train_loss:0.085522
Epoch [1/2], Iter [1399/3125], train_loss:0.124290
Epoch [1/2], Iter [1400/3125], train_loss:0.072803
Epoch [1/2], Iter [1401/3125], train_loss:0.106329
Epoch [1/2], Iter [1402/3125], train_loss:0.110175
Epoch [1/2], Iter [1403/3125], train_loss:0.135516
Epoch [1/2], Iter [1404/3125], train_loss:0.126846
Epoch [1/2], Iter [1405/3125], train_loss:0.125609
Epoch [1/2], Iter [1406/3125], train_loss:0.104507
Epoch [1/2], Iter [1407/3125], train_loss:0.110604
Epoch [1/2], Iter [1408/3125], train_loss:0.102211
Epoch [1/2], Iter [1409/3125], train_loss:0.127775
Epoch [1/2], Iter [1410/3125], train_loss:0.124930
Epoch [1/2], Iter [1411/3125], train_loss:0.113795
Epoch [1/2], Iter [1412/3125], train_loss:0.117095
Epoch [1/2], Iter [1413/3125], train_loss:0.108768
Epoch [1/2], Iter [1414/3125], train_loss:0.104051
Epoch [1/2], Iter [1415/3125], train_loss:0.114361
Epoch [1/2], Iter [1416/3125], train_loss:0.094833
Epoch [1/2], Iter [1417/3125], train_loss:0.122657
Epoch [1/2], Iter [1418/3125], train_loss:0.112632
Epoch [1/2], Iter [1419/3125], train_loss:0.107173
Epoch [1/2], Iter [1420/3125], train_loss:0.114673
Epoch [1/2], Iter [1421/3125], train_loss:0.108424
Epoch [1/2], Iter [1422/3125], train_loss:0.117980
Epoch [1/2], Iter [1423/3125], train_loss:0.108099
Epoch [1/2], Iter [1424/3125], train_loss:0.125009
Epoch [1/2], Iter [1425/3125], train_loss:0.103458
Epoch [1/2], Iter [1426/3125], train_loss:0.103903
Epoch [1/2], Iter [1427/3125], train_loss:0.087423
Epoch [1/2], Iter [1428/3125], train_loss:0.126077
Epoch [1/2], Iter [1429/3125], train_loss:0.138295
Epoch [1/2], Iter [1430/3125], train_loss:0.143625
Epoch [1/2], Iter [1431/3125], train_loss:0.116680
Epoch [1/2], Iter [1432/3125], train_loss:0.107513
Epoch [1/2], Iter [1433/3125], train_loss:0.090071
Epoch [1/2], Iter [1434/3125], train_loss:0.121352
Epoch [1/2], Iter [1435/3125], train_loss:0.143259
Epoch [1/2], Iter [1436/3125], train_loss:0.108410
Epoch [1/2], Iter [1437/3125], train_loss:0.131677
Epoch [1/2], Iter [1438/3125], train_loss:0.115317
Epoch [1/2], Iter [1439/3125], train_loss:0.114774
Epoch [1/2], Iter [1440/3125], train_loss:0.088071
Epoch [1/2], Iter [1441/3125], train_loss:0.127111
Epoch [1/2], Iter [1442/3125], train_loss:0.121695
Epoch [1/2], Iter [1443/3125], train_loss:0.123811
Epoch [1/2], Iter [1444/3125], train_loss:0.110418
Epoch [1/2], Iter [1445/3125], train_loss:0.112827
Epoch [1/2], Iter [1446/3125], train_loss:0.110010
Epoch [1/2], Iter [1447/3125], train_loss:0.108433
Epoch [1/2], Iter [1448/3125], train_loss:0.100427
Epoch [1/2], Iter [1449/3125], train_loss:0.132875
Epoch [1/2], Iter [1450/3125], train_loss:0.132393
Epoch [1/2], Iter [1451/3125], train_loss:0.135795
Epoch [1/2], Iter [1452/3125], train_loss:0.125536
Epoch [1/2], Iter [1453/3125], train_loss:0.126423
Epoch [1/2], Iter [1454/3125], train_loss:0.092239
Epoch [1/2], Iter [1455/3125], train_loss:0.154004
Epoch [1/2], Iter [1456/3125], train_loss:0.111715
Epoch [1/2], Iter [1457/3125], train_loss:0.128267
Epoch [1/2], Iter [1458/3125], train_loss:0.131167
Epoch [1/2], Iter [1459/3125], train_loss:0.122671
Epoch [1/2], Iter [1460/3125], train_loss:0.140966
Epoch [1/2], Iter [1461/3125], train_loss:0.114198
Epoch [1/2], Iter [1462/3125], train_loss:0.129094
Epoch [1/2], Iter [1463/3125], train_loss:0.109807
Epoch [1/2], Iter [1464/3125], train_loss:0.146480
Epoch [1/2], Iter [1465/3125], train_loss:0.105395
Epoch [1/2], Iter [1466/3125], train_loss:0.133418
Epoch [1/2], Iter [1467/3125], train_loss:0.131397
Epoch [1/2], Iter [1468/3125], train_loss:0.116122
Epoch [1/2], Iter [1469/3125], train_loss:0.114184
Epoch [1/2], Iter [1470/3125], train_loss:0.086669
Epoch [1/2], Iter [1471/3125], train_loss:0.098426
Epoch [1/2], Iter [1472/3125], train_loss:0.143860
Epoch [1/2], Iter [1473/3125], train_loss:0.109508
Epoch [1/2], Iter [1474/3125], train_loss:0.099417
Epoch [1/2], Iter [1475/3125], train_loss:0.137157
Epoch [1/2], Iter [1476/3125], train_loss:0.129953
Epoch [1/2], Iter [1477/3125], train_loss:0.112809
Epoch [1/2], Iter [1478/3125], train_loss:0.113120
Epoch [1/2], Iter [1479/3125], train_loss:0.090743
Epoch [1/2], Iter [1480/3125], train_loss:0.129271
Epoch [1/2], Iter [1481/3125], train_loss:0.137313
Epoch [1/2], Iter [1482/3125], train_loss:0.108650
Epoch [1/2], Iter [1483/3125], train_loss:0.137887
Epoch [1/2], Iter [1484/3125], train_loss:0.117343
Epoch [1/2], Iter [1485/3125], train_loss:0.114352
Epoch [1/2], Iter [1486/3125], train_loss:0.101056
Epoch [1/2], Iter [1487/3125], train_loss:0.120009
Epoch [1/2], Iter [1488/3125], train_loss:0.122330
Epoch [1/2], Iter [1489/3125], train_loss:0.117299
Epoch [1/2], Iter [1490/3125], train_loss:0.108325
Epoch [1/2], Iter [1491/3125], train_loss:0.119696
Epoch [1/2], Iter [1492/3125], train_loss:0.155192
Epoch [1/2], Iter [1493/3125], train_loss:0.134578
Epoch [1/2], Iter [1494/3125], train_loss:0.114686
Epoch [1/2], Iter [1495/3125], train_loss:0.143138
Epoch [1/2], Iter [1496/3125], train_loss:0.098434
Epoch [1/2], Iter [1497/3125], train_loss:0.085917
Epoch [1/2], Iter [1498/3125], train_loss:0.115986
Epoch [1/2], Iter [1499/3125], train_loss:0.142638
Epoch [1/2], Iter [1500/3125], train_loss:0.137145
Epoch [1/2], Iter [1501/3125], train_loss:0.097649
Epoch [1/2], Iter [1502/3125], train_loss:0.114596
Epoch [1/2], Iter [1503/3125], train_loss:0.114260
Epoch [1/2], Iter [1504/3125], train_loss:0.109256
Epoch [1/2], Iter [1505/3125], train_loss:0.116249
Epoch [1/2], Iter [1506/3125], train_loss:0.117468
Epoch [1/2], Iter [1507/3125], train_loss:0.106030
Epoch [1/2], Iter [1508/3125], train_loss:0.125583
Epoch [1/2], Iter [1509/3125], train_loss:0.126954
Epoch [1/2], Iter [1510/3125], train_loss:0.105045
Epoch [1/2], Iter [1511/3125], train_loss:0.091526
Epoch [1/2], Iter [1512/3125], train_loss:0.110302
Epoch [1/2], Iter [1513/3125], train_loss:0.106257
Epoch [1/2], Iter [1514/3125], train_loss:0.089856
Epoch [1/2], Iter [1515/3125], train_loss:0.122390
Epoch [1/2], Iter [1516/3125], train_loss:0.148043
Epoch [1/2], Iter [1517/3125], train_loss:0.089684
Epoch [1/2], Iter [1518/3125], train_loss:0.126691
Epoch [1/2], Iter [1519/3125], train_loss:0.093548
Epoch [1/2], Iter [1520/3125], train_loss:0.112327
Epoch [1/2], Iter [1521/3125], train_loss:0.128736
Epoch [1/2], Iter [1522/3125], train_loss:0.141749
Epoch [1/2], Iter [1523/3125], train_loss:0.095694
Epoch [1/2], Iter [1524/3125], train_loss:0.126285
Epoch [1/2], Iter [1525/3125], train_loss:0.117021
Epoch [1/2], Iter [1526/3125], train_loss:0.120626
Epoch [1/2], Iter [1527/3125], train_loss:0.118179
Epoch [1/2], Iter [1528/3125], train_loss:0.129668
Epoch [1/2], Iter [1529/3125], train_loss:0.103961
Epoch [1/2], Iter [1530/3125], train_loss:0.096230
Epoch [1/2], Iter [1531/3125], train_loss:0.155981
Epoch [1/2], Iter [1532/3125], train_loss:0.112469
Epoch [1/2], Iter [1533/3125], train_loss:0.116868
Epoch [1/2], Iter [1534/3125], train_loss:0.137747
Epoch [1/2], Iter [1535/3125], train_loss:0.098376
Epoch [1/2], Iter [1536/3125], train_loss:0.104237
Epoch [1/2], Iter [1537/3125], train_loss:0.135685
Epoch [1/2], Iter [1538/3125], train_loss:0.077748
Epoch [1/2], Iter [1539/3125], train_loss:0.110037
Epoch [1/2], Iter [1540/3125], train_loss:0.091916
Epoch [1/2], Iter [1541/3125], train_loss:0.094626
Epoch [1/2], Iter [1542/3125], train_loss:0.103348
Epoch [1/2], Iter [1543/3125], train_loss:0.086694
Epoch [1/2], Iter [1544/3125], train_loss:0.106981
Epoch [1/2], Iter [1545/3125], train_loss:0.105662
Epoch [1/2], Iter [1546/3125], train_loss:0.117666
Epoch [1/2], Iter [1547/3125], train_loss:0.085815
Epoch [1/2], Iter [1548/3125], train_loss:0.127396
Epoch [1/2], Iter [1549/3125], train_loss:0.126074
Epoch [1/2], Iter [1550/3125], train_loss:0.095834
Epoch [1/2], Iter [1551/3125], train_loss:0.107446
Epoch [1/2], Iter [1552/3125], train_loss:0.114715
Epoch [1/2], Iter [1553/3125], train_loss:0.098569
Epoch [1/2], Iter [1554/3125], train_loss:0.110418
Epoch [1/2], Iter [1555/3125], train_loss:0.134563
Epoch [1/2], Iter [1556/3125], train_loss:0.108616
Epoch [1/2], Iter [1557/3125], train_loss:0.100360
Epoch [1/2], Iter [1558/3125], train_loss:0.117380
Epoch [1/2], Iter [1559/3125], train_loss:0.117120
Epoch [1/2], Iter [1560/3125], train_loss:0.136910
Epoch [1/2], Iter [1561/3125], train_loss:0.107711
Epoch [1/2], Iter [1562/3125], train_loss:0.117605
Epoch [1/2], Iter [1563/3125], train_loss:0.102154
Epoch [1/2], Iter [1564/3125], train_loss:0.108402
Epoch [1/2], Iter [1565/3125], train_loss:0.093580
Epoch [1/2], Iter [1566/3125], train_loss:0.135590
Epoch [1/2], Iter [1567/3125], train_loss:0.099009
Epoch [1/2], Iter [1568/3125], train_loss:0.121854
Epoch [1/2], Iter [1569/3125], train_loss:0.109978
Epoch [1/2], Iter [1570/3125], train_loss:0.122701
Epoch [1/2], Iter [1571/3125], train_loss:0.114001
Epoch [1/2], Iter [1572/3125], train_loss:0.130748
Epoch [1/2], Iter [1573/3125], train_loss:0.114292
Epoch [1/2], Iter [1574/3125], train_loss:0.124781
Epoch [1/2], Iter [1575/3125], train_loss:0.138773
Epoch [1/2], Iter [1576/3125], train_loss:0.131097
Epoch [1/2], Iter [1577/3125], train_loss:0.105329
Epoch [1/2], Iter [1578/3125], train_loss:0.114761
Epoch [1/2], Iter [1579/3125], train_loss:0.094465
Epoch [1/2], Iter [1580/3125], train_loss:0.111704
Epoch [1/2], Iter [1581/3125], train_loss:0.140406
Epoch [1/2], Iter [1582/3125], train_loss:0.102851
Epoch [1/2], Iter [1583/3125], train_loss:0.106198
Epoch [1/2], Iter [1584/3125], train_loss:0.120307
Epoch [1/2], Iter [1585/3125], train_loss:0.126306
Epoch [1/2], Iter [1586/3125], train_loss:0.123201
Epoch [1/2], Iter [1587/3125], train_loss:0.100626
Epoch [1/2], Iter [1588/3125], train_loss:0.120522
Epoch [1/2], Iter [1589/3125], train_loss:0.109287
Epoch [1/2], Iter [1590/3125], train_loss:0.116193
Epoch [1/2], Iter [1591/3125], train_loss:0.100414
Epoch [1/2], Iter [1592/3125], train_loss:0.117426
Epoch [1/2], Iter [1593/3125], train_loss:0.090667
Epoch [1/2], Iter [1594/3125], train_loss:0.096649
Epoch [1/2], Iter [1595/3125], train_loss:0.124549
Epoch [1/2], Iter [1596/3125], train_loss:0.158632
Epoch [1/2], Iter [1597/3125], train_loss:0.126395
Epoch [1/2], Iter [1598/3125], train_loss:0.103779
Epoch [1/2], Iter [1599/3125], train_loss:0.114746
Epoch [1/2], Iter [1600/3125], train_loss:0.123276
Epoch [1/2], Iter [1601/3125], train_loss:0.097323
Epoch [1/2], Iter [1602/3125], train_loss:0.097028
Epoch [1/2], Iter [1603/3125], train_loss:0.136745
Epoch [1/2], Iter [1604/3125], train_loss:0.115201
Epoch [1/2], Iter [1605/3125], train_loss:0.107482
Epoch [1/2], Iter [1606/3125], train_loss:0.085949
Epoch [1/2], Iter [1607/3125], train_loss:0.130795
Epoch [1/2], Iter [1608/3125], train_loss:0.122182
Epoch [1/2], Iter [1609/3125], train_loss:0.122975
Epoch [1/2], Iter [1610/3125], train_loss:0.123023
Epoch [1/2], Iter [1611/3125], train_loss:0.143675
Epoch [1/2], Iter [1612/3125], train_loss:0.108047
Epoch [1/2], Iter [1613/3125], train_loss:0.114930
Epoch [1/2], Iter [1614/3125], train_loss:0.105145
Epoch [1/2], Iter [1615/3125], train_loss:0.141871
Epoch [1/2], Iter [1616/3125], train_loss:0.109234
Epoch [1/2], Iter [1617/3125], train_loss:0.115216
Epoch [1/2], Iter [1618/3125], train_loss:0.081389
Epoch [1/2], Iter [1619/3125], train_loss:0.099080
Epoch [1/2], Iter [1620/3125], train_loss:0.102463
Epoch [1/2], Iter [1621/3125], train_loss:0.108137
Epoch [1/2], Iter [1622/3125], train_loss:0.098112
Epoch [1/2], Iter [1623/3125], train_loss:0.114499
Epoch [1/2], Iter [1624/3125], train_loss:0.102529
Epoch [1/2], Iter [1625/3125], train_loss:0.128080
Epoch [1/2], Iter [1626/3125], train_loss:0.109938
Epoch [1/2], Iter [1627/3125], train_loss:0.097465
Epoch [1/2], Iter [1628/3125], train_loss:0.112853
Epoch [1/2], Iter [1629/3125], train_loss:0.087902
Epoch [1/2], Iter [1630/3125], train_loss:0.111491
Epoch [1/2], Iter [1631/3125], train_loss:0.107459
Epoch [1/2], Iter [1632/3125], train_loss:0.101524
Epoch [1/2], Iter [1633/3125], train_loss:0.117303
Epoch [1/2], Iter [1634/3125], train_loss:0.136640
Epoch [1/2], Iter [1635/3125], train_loss:0.104045
Epoch [1/2], Iter [1636/3125], train_loss:0.098606
Epoch [1/2], Iter [1637/3125], train_loss:0.109633
Epoch [1/2], Iter [1638/3125], train_loss:0.120075
Epoch [1/2], Iter [1639/3125], train_loss:0.140995
Epoch [1/2], Iter [1640/3125], train_loss:0.105396
Epoch [1/2], Iter [1641/3125], train_loss:0.114681
Epoch [1/2], Iter [1642/3125], train_loss:0.093426
Epoch [1/2], Iter [1643/3125], train_loss:0.108103
Epoch [1/2], Iter [1644/3125], train_loss:0.131016
Epoch [1/2], Iter [1645/3125], train_loss:0.133334
Epoch [1/2], Iter [1646/3125], train_loss:0.076322
Epoch [1/2], Iter [1647/3125], train_loss:0.104391
Epoch [1/2], Iter [1648/3125], train_loss:0.133650
Epoch [1/2], Iter [1649/3125], train_loss:0.117201
Epoch [1/2], Iter [1650/3125], train_loss:0.095546
Epoch [1/2], Iter [1651/3125], train_loss:0.112587
Epoch [1/2], Iter [1652/3125], train_loss:0.106575
Epoch [1/2], Iter [1653/3125], train_loss:0.079604
Epoch [1/2], Iter [1654/3125], train_loss:0.098822
Epoch [1/2], Iter [1655/3125], train_loss:0.094789
Epoch [1/2], Iter [1656/3125], train_loss:0.148320
Epoch [1/2], Iter [1657/3125], train_loss:0.123790
Epoch [1/2], Iter [1658/3125], train_loss:0.106912
Epoch [1/2], Iter [1659/3125], train_loss:0.109952
Epoch [1/2], Iter [1660/3125], train_loss:0.131533
Epoch [1/2], Iter [1661/3125], train_loss:0.123524
Epoch [1/2], Iter [1662/3125], train_loss:0.134478
Epoch [1/2], Iter [1663/3125], train_loss:0.127586
Epoch [1/2], Iter [1664/3125], train_loss:0.121722
Epoch [1/2], Iter [1665/3125], train_loss:0.139394
Epoch [1/2], Iter [1666/3125], train_loss:0.096734
Epoch [1/2], Iter [1667/3125], train_loss:0.092901
Epoch [1/2], Iter [1668/3125], train_loss:0.111155
Epoch [1/2], Iter [1669/3125], train_loss:0.118388
Epoch [1/2], Iter [1670/3125], train_loss:0.100780
Epoch [1/2], Iter [1671/3125], train_loss:0.109779
Epoch [1/2], Iter [1672/3125], train_loss:0.131700
Epoch [1/2], Iter [1673/3125], train_loss:0.141507
Epoch [1/2], Iter [1674/3125], train_loss:0.109175
Epoch [1/2], Iter [1675/3125], train_loss:0.092189
Epoch [1/2], Iter [1676/3125], train_loss:0.101953
Epoch [1/2], Iter [1677/3125], train_loss:0.133398
Epoch [1/2], Iter [1678/3125], train_loss:0.141626
Epoch [1/2], Iter [1679/3125], train_loss:0.106853
Epoch [1/2], Iter [1680/3125], train_loss:0.111855
Epoch [1/2], Iter [1681/3125], train_loss:0.113937
Epoch [1/2], Iter [1682/3125], train_loss:0.105170
Epoch [1/2], Iter [1683/3125], train_loss:0.100870
Epoch [1/2], Iter [1684/3125], train_loss:0.117880
Epoch [1/2], Iter [1685/3125], train_loss:0.092299
Epoch [1/2], Iter [1686/3125], train_loss:0.108514
Epoch [1/2], Iter [1687/3125], train_loss:0.091988
Epoch [1/2], Iter [1688/3125], train_loss:0.142538
Epoch [1/2], Iter [1689/3125], train_loss:0.109092
Epoch [1/2], Iter [1690/3125], train_loss:0.119447
Epoch [1/2], Iter [1691/3125], train_loss:0.091529
Epoch [1/2], Iter [1692/3125], train_loss:0.113592
Epoch [1/2], Iter [1693/3125], train_loss:0.138641
Epoch [1/2], Iter [1694/3125], train_loss:0.081737
Epoch [1/2], Iter [1695/3125], train_loss:0.104201
Epoch [1/2], Iter [1696/3125], train_loss:0.130549
Epoch [1/2], Iter [1697/3125], train_loss:0.108230
Epoch [1/2], Iter [1698/3125], train_loss:0.123517
Epoch [1/2], Iter [1699/3125], train_loss:0.105155
Epoch [1/2], Iter [1700/3125], train_loss:0.099825
Epoch [1/2], Iter [1701/3125], train_loss:0.119471
Epoch [1/2], Iter [1702/3125], train_loss:0.102020
Epoch [1/2], Iter [1703/3125], train_loss:0.125723
Epoch [1/2], Iter [1704/3125], train_loss:0.117470
Epoch [1/2], Iter [1705/3125], train_loss:0.171311
Epoch [1/2], Iter [1706/3125], train_loss:0.113500
Epoch [1/2], Iter [1707/3125], train_loss:0.101780
Epoch [1/2], Iter [1708/3125], train_loss:0.097162
Epoch [1/2], Iter [1709/3125], train_loss:0.113087
Epoch [1/2], Iter [1710/3125], train_loss:0.121180
Epoch [1/2], Iter [1711/3125], train_loss:0.140923
Epoch [1/2], Iter [1712/3125], train_loss:0.130363
Epoch [1/2], Iter [1713/3125], train_loss:0.120499
Epoch [1/2], Iter [1714/3125], train_loss:0.129576
Epoch [1/2], Iter [1715/3125], train_loss:0.122925
Epoch [1/2], Iter [1716/3125], train_loss:0.107934
Epoch [1/2], Iter [1717/3125], train_loss:0.137756
Epoch [1/2], Iter [1718/3125], train_loss:0.118472
Epoch [1/2], Iter [1719/3125], train_loss:0.102445
Epoch [1/2], Iter [1720/3125], train_loss:0.102518
Epoch [1/2], Iter [1721/3125], train_loss:0.139594
Epoch [1/2], Iter [1722/3125], train_loss:0.097171
Epoch [1/2], Iter [1723/3125], train_loss:0.096021
Epoch [1/2], Iter [1724/3125], train_loss:0.111021
Epoch [1/2], Iter [1725/3125], train_loss:0.109239
Epoch [1/2], Iter [1726/3125], train_loss:0.095762
Epoch [1/2], Iter [1727/3125], train_loss:0.098066
Epoch [1/2], Iter [1728/3125], train_loss:0.116896
Epoch [1/2], Iter [1729/3125], train_loss:0.115975
Epoch [1/2], Iter [1730/3125], train_loss:0.124496
Epoch [1/2], Iter [1731/3125], train_loss:0.123490
Epoch [1/2], Iter [1732/3125], train_loss:0.104479
Epoch [1/2], Iter [1733/3125], train_loss:0.113522
Epoch [1/2], Iter [1734/3125], train_loss:0.103710
Epoch [1/2], Iter [1735/3125], train_loss:0.102665
Epoch [1/2], Iter [1736/3125], train_loss:0.085018
Epoch [1/2], Iter [1737/3125], train_loss:0.100424
Epoch [1/2], Iter [1738/3125], train_loss:0.127958
Epoch [1/2], Iter [1739/3125], train_loss:0.116772
Epoch [1/2], Iter [1740/3125], train_loss:0.112261
Epoch [1/2], Iter [1741/3125], train_loss:0.098929
Epoch [1/2], Iter [1742/3125], train_loss:0.128234
Epoch [1/2], Iter [1743/3125], train_loss:0.090779
Epoch [1/2], Iter [1744/3125], train_loss:0.122256
Epoch [1/2], Iter [1745/3125], train_loss:0.120534
Epoch [1/2], Iter [1746/3125], train_loss:0.097334
Epoch [1/2], Iter [1747/3125], train_loss:0.123642
Epoch [1/2], Iter [1748/3125], train_loss:0.123044
Epoch [1/2], Iter [1749/3125], train_loss:0.106322
Epoch [1/2], Iter [1750/3125], train_loss:0.097880
Epoch [1/2], Iter [1751/3125], train_loss:0.166705
Epoch [1/2], Iter [1752/3125], train_loss:0.134495
Epoch [1/2], Iter [1753/3125], train_loss:0.145566
Epoch [1/2], Iter [1754/3125], train_loss:0.121603
Epoch [1/2], Iter [1755/3125], train_loss:0.130360
Epoch [1/2], Iter [1756/3125], train_loss:0.111613
Epoch [1/2], Iter [1757/3125], train_loss:0.115353
Epoch [1/2], Iter [1758/3125], train_loss:0.118099
Epoch [1/2], Iter [1759/3125], train_loss:0.132821
Epoch [1/2], Iter [1760/3125], train_loss:0.121610
Epoch [1/2], Iter [1761/3125], train_loss:0.108354
Epoch [1/2], Iter [1762/3125], train_loss:0.109593
Epoch [1/2], Iter [1763/3125], train_loss:0.087590
Epoch [1/2], Iter [1764/3125], train_loss:0.122846
Epoch [1/2], Iter [1765/3125], train_loss:0.121044
Epoch [1/2], Iter [1766/3125], train_loss:0.117222
Epoch [1/2], Iter [1767/3125], train_loss:0.105632
Epoch [1/2], Iter [1768/3125], train_loss:0.082365
Epoch [1/2], Iter [1769/3125], train_loss:0.125430
Epoch [1/2], Iter [1770/3125], train_loss:0.122826
Epoch [1/2], Iter [1771/3125], train_loss:0.116514
Epoch [1/2], Iter [1772/3125], train_loss:0.119358
Epoch [1/2], Iter [1773/3125], train_loss:0.116099
Epoch [1/2], Iter [1774/3125], train_loss:0.136565
Epoch [1/2], Iter [1775/3125], train_loss:0.105898
Epoch [1/2], Iter [1776/3125], train_loss:0.090921
Epoch [1/2], Iter [1777/3125], train_loss:0.117271
Epoch [1/2], Iter [1778/3125], train_loss:0.098961
Epoch [1/2], Iter [1779/3125], train_loss:0.080819
Epoch [1/2], Iter [1780/3125], train_loss:0.081426
Epoch [1/2], Iter [1781/3125], train_loss:0.093929
Epoch [1/2], Iter [1782/3125], train_loss:0.117402
Epoch [1/2], Iter [1783/3125], train_loss:0.095223
Epoch [1/2], Iter [1784/3125], train_loss:0.120733
Epoch [1/2], Iter [1785/3125], train_loss:0.098692
Epoch [1/2], Iter [1786/3125], train_loss:0.115689
Epoch [1/2], Iter [1787/3125], train_loss:0.113889
Epoch [1/2], Iter [1788/3125], train_loss:0.089751
Epoch [1/2], Iter [1789/3125], train_loss:0.109842
Epoch [1/2], Iter [1790/3125], train_loss:0.089839
Epoch [1/2], Iter [1791/3125], train_loss:0.143017
Epoch [1/2], Iter [1792/3125], train_loss:0.122177
Epoch [1/2], Iter [1793/3125], train_loss:0.088301
Epoch [1/2], Iter [1794/3125], train_loss:0.116527
Epoch [1/2], Iter [1795/3125], train_loss:0.089206
Epoch [1/2], Iter [1796/3125], train_loss:0.108409
Epoch [1/2], Iter [1797/3125], train_loss:0.095537
Epoch [1/2], Iter [1798/3125], train_loss:0.100983
Epoch [1/2], Iter [1799/3125], train_loss:0.112310
Epoch [1/2], Iter [1800/3125], train_loss:0.105625
Epoch [1/2], Iter [1801/3125], train_loss:0.106045
Epoch [1/2], Iter [1802/3125], train_loss:0.118067
Epoch [1/2], Iter [1803/3125], train_loss:0.103582
Epoch [1/2], Iter [1804/3125], train_loss:0.083729
Epoch [1/2], Iter [1805/3125], train_loss:0.133233
Epoch [1/2], Iter [1806/3125], train_loss:0.100614
Epoch [1/2], Iter [1807/3125], train_loss:0.102098
Epoch [1/2], Iter [1808/3125], train_loss:0.094543
Epoch [1/2], Iter [1809/3125], train_loss:0.120425
Epoch [1/2], Iter [1810/3125], train_loss:0.121749
Epoch [1/2], Iter [1811/3125], train_loss:0.094081
Epoch [1/2], Iter [1812/3125], train_loss:0.125282
Epoch [1/2], Iter [1813/3125], train_loss:0.092221
Epoch [1/2], Iter [1814/3125], train_loss:0.120117
Epoch [1/2], Iter [1815/3125], train_loss:0.111955
Epoch [1/2], Iter [1816/3125], train_loss:0.108735
Epoch [1/2], Iter [1817/3125], train_loss:0.123501
Epoch [1/2], Iter [1818/3125], train_loss:0.087921
Epoch [1/2], Iter [1819/3125], train_loss:0.121578
Epoch [1/2], Iter [1820/3125], train_loss:0.111834
Epoch [1/2], Iter [1821/3125], train_loss:0.128368
Epoch [1/2], Iter [1822/3125], train_loss:0.111813
Epoch [1/2], Iter [1823/3125], train_loss:0.141893
Epoch [1/2], Iter [1824/3125], train_loss:0.097122
Epoch [1/2], Iter [1825/3125], train_loss:0.104660
Epoch [1/2], Iter [1826/3125], train_loss:0.151332
Epoch [1/2], Iter [1827/3125], train_loss:0.100946
Epoch [1/2], Iter [1828/3125], train_loss:0.121244
Epoch [1/2], Iter [1829/3125], train_loss:0.104100
Epoch [1/2], Iter [1830/3125], train_loss:0.087686
Epoch [1/2], Iter [1831/3125], train_loss:0.111758
Epoch [1/2], Iter [1832/3125], train_loss:0.084322
Epoch [1/2], Iter [1833/3125], train_loss:0.099852
Epoch [1/2], Iter [1834/3125], train_loss:0.107632
Epoch [1/2], Iter [1835/3125], train_loss:0.134178
Epoch [1/2], Iter [1836/3125], train_loss:0.084126
Epoch [1/2], Iter [1837/3125], train_loss:0.118831
Epoch [1/2], Iter [1838/3125], train_loss:0.118193
Epoch [1/2], Iter [1839/3125], train_loss:0.102403
Epoch [1/2], Iter [1840/3125], train_loss:0.119499
Epoch [1/2], Iter [1841/3125], train_loss:0.089647
Epoch [1/2], Iter [1842/3125], train_loss:0.123974
Epoch [1/2], Iter [1843/3125], train_loss:0.103928
Epoch [1/2], Iter [1844/3125], train_loss:0.085205
Epoch [1/2], Iter [1845/3125], train_loss:0.098993
Epoch [1/2], Iter [1846/3125], train_loss:0.088542
Epoch [1/2], Iter [1847/3125], train_loss:0.090588
Epoch [1/2], Iter [1848/3125], train_loss:0.129216
Epoch [1/2], Iter [1849/3125], train_loss:0.124849
Epoch [1/2], Iter [1850/3125], train_loss:0.115883
Epoch [1/2], Iter [1851/3125], train_loss:0.100992
Epoch [1/2], Iter [1852/3125], train_loss:0.099127
Epoch [1/2], Iter [1853/3125], train_loss:0.108038
Epoch [1/2], Iter [1854/3125], train_loss:0.106039
Epoch [1/2], Iter [1855/3125], train_loss:0.107693
Epoch [1/2], Iter [1856/3125], train_loss:0.122102
Epoch [1/2], Iter [1857/3125], train_loss:0.065592
Epoch [1/2], Iter [1858/3125], train_loss:0.089284
Epoch [1/2], Iter [1859/3125], train_loss:0.128695
Epoch [1/2], Iter [1860/3125], train_loss:0.106631
Epoch [1/2], Iter [1861/3125], train_loss:0.093396
Epoch [1/2], Iter [1862/3125], train_loss:0.102988
Epoch [1/2], Iter [1863/3125], train_loss:0.107683
Epoch [1/2], Iter [1864/3125], train_loss:0.099660
Epoch [1/2], Iter [1865/3125], train_loss:0.116378
Epoch [1/2], Iter [1866/3125], train_loss:0.116871
Epoch [1/2], Iter [1867/3125], train_loss:0.127018
Epoch [1/2], Iter [1868/3125], train_loss:0.110150
Epoch [1/2], Iter [1869/3125], train_loss:0.138162
Epoch [1/2], Iter [1870/3125], train_loss:0.120097
Epoch [1/2], Iter [1871/3125], train_loss:0.089983
Epoch [1/2], Iter [1872/3125], train_loss:0.115508
Epoch [1/2], Iter [1873/3125], train_loss:0.110952
Epoch [1/2], Iter [1874/3125], train_loss:0.102631
Epoch [1/2], Iter [1875/3125], train_loss:0.117026
Epoch [1/2], Iter [1876/3125], train_loss:0.095122
Epoch [1/2], Iter [1877/3125], train_loss:0.121551
Epoch [1/2], Iter [1878/3125], train_loss:0.124627
Epoch [1/2], Iter [1879/3125], train_loss:0.108700
Epoch [1/2], Iter [1880/3125], train_loss:0.106096
Epoch [1/2], Iter [1881/3125], train_loss:0.073590
Epoch [1/2], Iter [1882/3125], train_loss:0.105583
Epoch [1/2], Iter [1883/3125], train_loss:0.105383
Epoch [1/2], Iter [1884/3125], train_loss:0.143912
Epoch [1/2], Iter [1885/3125], train_loss:0.116281
Epoch [1/2], Iter [1886/3125], train_loss:0.127088
Epoch [1/2], Iter [1887/3125], train_loss:0.110158
Epoch [1/2], Iter [1888/3125], train_loss:0.098516
Epoch [1/2], Iter [1889/3125], train_loss:0.099668
Epoch [1/2], Iter [1890/3125], train_loss:0.096417
Epoch [1/2], Iter [1891/3125], train_loss:0.119125
Epoch [1/2], Iter [1892/3125], train_loss:0.104781
Epoch [1/2], Iter [1893/3125], train_loss:0.101876
Epoch [1/2], Iter [1894/3125], train_loss:0.106831
Epoch [1/2], Iter [1895/3125], train_loss:0.107553
Epoch [1/2], Iter [1896/3125], train_loss:0.109665
Epoch [1/2], Iter [1897/3125], train_loss:0.110008
Epoch [1/2], Iter [1898/3125], train_loss:0.108660
Epoch [1/2], Iter [1899/3125], train_loss:0.110264
Epoch [1/2], Iter [1900/3125], train_loss:0.152644
Epoch [1/2], Iter [1901/3125], train_loss:0.117720
Epoch [1/2], Iter [1902/3125], train_loss:0.146421
Epoch [1/2], Iter [1903/3125], train_loss:0.123149
Epoch [1/2], Iter [1904/3125], train_loss:0.095981
Epoch [1/2], Iter [1905/3125], train_loss:0.085133
Epoch [1/2], Iter [1906/3125], train_loss:0.089243
Epoch [1/2], Iter [1907/3125], train_loss:0.093153
Epoch [1/2], Iter [1908/3125], train_loss:0.106806
Epoch [1/2], Iter [1909/3125], train_loss:0.089167
Epoch [1/2], Iter [1910/3125], train_loss:0.130021
Epoch [1/2], Iter [1911/3125], train_loss:0.085724
Epoch [1/2], Iter [1912/3125], train_loss:0.085494
Epoch [1/2], Iter [1913/3125], train_loss:0.109272
Epoch [1/2], Iter [1914/3125], train_loss:0.102889
Epoch [1/2], Iter [1915/3125], train_loss:0.101257
Epoch [1/2], Iter [1916/3125], train_loss:0.122897
Epoch [1/2], Iter [1917/3125], train_loss:0.094979
Epoch [1/2], Iter [1918/3125], train_loss:0.087800
Epoch [1/2], Iter [1919/3125], train_loss:0.113957
Epoch [1/2], Iter [1920/3125], train_loss:0.120947
Epoch [1/2], Iter [1921/3125], train_loss:0.134248
Epoch [1/2], Iter [1922/3125], train_loss:0.120839
Epoch [1/2], Iter [1923/3125], train_loss:0.097012
Epoch [1/2], Iter [1924/3125], train_loss:0.095889
Epoch [1/2], Iter [1925/3125], train_loss:0.122343
Epoch [1/2], Iter [1926/3125], train_loss:0.110138
Epoch [1/2], Iter [1927/3125], train_loss:0.117822
Epoch [1/2], Iter [1928/3125], train_loss:0.149388
Epoch [1/2], Iter [1929/3125], train_loss:0.126594
Epoch [1/2], Iter [1930/3125], train_loss:0.119148
Epoch [1/2], Iter [1931/3125], train_loss:0.131302
Epoch [1/2], Iter [1932/3125], train_loss:0.113817
Epoch [1/2], Iter [1933/3125], train_loss:0.104843
Epoch [1/2], Iter [1934/3125], train_loss:0.102203
Epoch [1/2], Iter [1935/3125], train_loss:0.104758
Epoch [1/2], Iter [1936/3125], train_loss:0.084807
Epoch [1/2], Iter [1937/3125], train_loss:0.103213
Epoch [1/2], Iter [1938/3125], train_loss:0.118753
Epoch [1/2], Iter [1939/3125], train_loss:0.085714
Epoch [1/2], Iter [1940/3125], train_loss:0.075405
Epoch [1/2], Iter [1941/3125], train_loss:0.111731
Epoch [1/2], Iter [1942/3125], train_loss:0.137009
Epoch [1/2], Iter [1943/3125], train_loss:0.106555
Epoch [1/2], Iter [1944/3125], train_loss:0.137298
Epoch [1/2], Iter [1945/3125], train_loss:0.130962
Epoch [1/2], Iter [1946/3125], train_loss:0.128386
Epoch [1/2], Iter [1947/3125], train_loss:0.118504
Epoch [1/2], Iter [1948/3125], train_loss:0.072771
Epoch [1/2], Iter [1949/3125], train_loss:0.086928
Epoch [1/2], Iter [1950/3125], train_loss:0.123281
Epoch [1/2], Iter [1951/3125], train_loss:0.099254
Epoch [1/2], Iter [1952/3125], train_loss:0.127203
Epoch [1/2], Iter [1953/3125], train_loss:0.135958
Epoch [1/2], Iter [1954/3125], train_loss:0.105019
Epoch [1/2], Iter [1955/3125], train_loss:0.141218
Epoch [1/2], Iter [1956/3125], train_loss:0.086414
Epoch [1/2], Iter [1957/3125], train_loss:0.122000
Epoch [1/2], Iter [1958/3125], train_loss:0.108958
Epoch [1/2], Iter [1959/3125], train_loss:0.109269
Epoch [1/2], Iter [1960/3125], train_loss:0.106017
Epoch [1/2], Iter [1961/3125], train_loss:0.107679
Epoch [1/2], Iter [1962/3125], train_loss:0.114157
Epoch [1/2], Iter [1963/3125], train_loss:0.088606
Epoch [1/2], Iter [1964/3125], train_loss:0.104400
Epoch [1/2], Iter [1965/3125], train_loss:0.084936
Epoch [1/2], Iter [1966/3125], train_loss:0.112303
Epoch [1/2], Iter [1967/3125], train_loss:0.101845
Epoch [1/2], Iter [1968/3125], train_loss:0.118825
Epoch [1/2], Iter [1969/3125], train_loss:0.121779
Epoch [1/2], Iter [1970/3125], train_loss:0.074884
Epoch [1/2], Iter [1971/3125], train_loss:0.117793
Epoch [1/2], Iter [1972/3125], train_loss:0.090739
Epoch [1/2], Iter [1973/3125], train_loss:0.110963
Epoch [1/2], Iter [1974/3125], train_loss:0.139955
Epoch [1/2], Iter [1975/3125], train_loss:0.117716
Epoch [1/2], Iter [1976/3125], train_loss:0.111063
Epoch [1/2], Iter [1977/3125], train_loss:0.089905
Epoch [1/2], Iter [1978/3125], train_loss:0.091710
Epoch [1/2], Iter [1979/3125], train_loss:0.113500
Epoch [1/2], Iter [1980/3125], train_loss:0.085731
Epoch [1/2], Iter [1981/3125], train_loss:0.089114
Epoch [1/2], Iter [1982/3125], train_loss:0.073216
Epoch [1/2], Iter [1983/3125], train_loss:0.078870
Epoch [1/2], Iter [1984/3125], train_loss:0.117588
Epoch [1/2], Iter [1985/3125], train_loss:0.104458
Epoch [1/2], Iter [1986/3125], train_loss:0.108113
Epoch [1/2], Iter [1987/3125], train_loss:0.120712
Epoch [1/2], Iter [1988/3125], train_loss:0.108525
Epoch [1/2], Iter [1989/3125], train_loss:0.086377
Epoch [1/2], Iter [1990/3125], train_loss:0.094650
Epoch [1/2], Iter [1991/3125], train_loss:0.074587
Epoch [1/2], Iter [1992/3125], train_loss:0.099681
Epoch [1/2], Iter [1993/3125], train_loss:0.092766
Epoch [1/2], Iter [1994/3125], train_loss:0.112165
Epoch [1/2], Iter [1995/3125], train_loss:0.107683
Epoch [1/2], Iter [1996/3125], train_loss:0.103036
Epoch [1/2], Iter [1997/3125], train_loss:0.153432
Epoch [1/2], Iter [1998/3125], train_loss:0.096860
Epoch [1/2], Iter [1999/3125], train_loss:0.142768
Epoch [1/2], Iter [2000/3125], train_loss:0.081604
Epoch [1/2], Iter [2001/3125], train_loss:0.102904
Epoch [1/2], Iter [2002/3125], train_loss:0.147187
Epoch [1/2], Iter [2003/3125], train_loss:0.084077
Epoch [1/2], Iter [2004/3125], train_loss:0.120355
Epoch [1/2], Iter [2005/3125], train_loss:0.146324
Epoch [1/2], Iter [2006/3125], train_loss:0.086058
Epoch [1/2], Iter [2007/3125], train_loss:0.099165
Epoch [1/2], Iter [2008/3125], train_loss:0.129830
Epoch [1/2], Iter [2009/3125], train_loss:0.086155
Epoch [1/2], Iter [2010/3125], train_loss:0.100047
Epoch [1/2], Iter [2011/3125], train_loss:0.106366
Epoch [1/2], Iter [2012/3125], train_loss:0.135484
Epoch [1/2], Iter [2013/3125], train_loss:0.132166
Epoch [1/2], Iter [2014/3125], train_loss:0.130440
Epoch [1/2], Iter [2015/3125], train_loss:0.098773
Epoch [1/2], Iter [2016/3125], train_loss:0.126730
Epoch [1/2], Iter [2017/3125], train_loss:0.085111
Epoch [1/2], Iter [2018/3125], train_loss:0.129992
Epoch [1/2], Iter [2019/3125], train_loss:0.111593
Epoch [1/2], Iter [2020/3125], train_loss:0.091401
Epoch [1/2], Iter [2021/3125], train_loss:0.119698
Epoch [1/2], Iter [2022/3125], train_loss:0.122655
Epoch [1/2], Iter [2023/3125], train_loss:0.120993
Epoch [1/2], Iter [2024/3125], train_loss:0.094078
Epoch [1/2], Iter [2025/3125], train_loss:0.080260
Epoch [1/2], Iter [2026/3125], train_loss:0.076512
Epoch [1/2], Iter [2027/3125], train_loss:0.089733
Epoch [1/2], Iter [2028/3125], train_loss:0.109131
Epoch [1/2], Iter [2029/3125], train_loss:0.101117
Epoch [1/2], Iter [2030/3125], train_loss:0.135421
Epoch [1/2], Iter [2031/3125], train_loss:0.078282
Epoch [1/2], Iter [2032/3125], train_loss:0.120359
Epoch [1/2], Iter [2033/3125], train_loss:0.139398
Epoch [1/2], Iter [2034/3125], train_loss:0.131844
Epoch [1/2], Iter [2035/3125], train_loss:0.081854
Epoch [1/2], Iter [2036/3125], train_loss:0.105653
Epoch [1/2], Iter [2037/3125], train_loss:0.101963
Epoch [1/2], Iter [2038/3125], train_loss:0.093379
Epoch [1/2], Iter [2039/3125], train_loss:0.140933
Epoch [1/2], Iter [2040/3125], train_loss:0.096073
Epoch [1/2], Iter [2041/3125], train_loss:0.124154
Epoch [1/2], Iter [2042/3125], train_loss:0.118376
Epoch [1/2], Iter [2043/3125], train_loss:0.121481
Epoch [1/2], Iter [2044/3125], train_loss:0.106825
Epoch [1/2], Iter [2045/3125], train_loss:0.110553
Epoch [1/2], Iter [2046/3125], train_loss:0.104090
Epoch [1/2], Iter [2047/3125], train_loss:0.093030
Epoch [1/2], Iter [2048/3125], train_loss:0.156042
Epoch [1/2], Iter [2049/3125], train_loss:0.116730
Epoch [1/2], Iter [2050/3125], train_loss:0.115696
Epoch [1/2], Iter [2051/3125], train_loss:0.132308
Epoch [1/2], Iter [2052/3125], train_loss:0.120332
Epoch [1/2], Iter [2053/3125], train_loss:0.126321
Epoch [1/2], Iter [2054/3125], train_loss:0.096678
Epoch [1/2], Iter [2055/3125], train_loss:0.155123
Epoch [1/2], Iter [2056/3125], train_loss:0.114222
Epoch [1/2], Iter [2057/3125], train_loss:0.098100
Epoch [1/2], Iter [2058/3125], train_loss:0.106661
Epoch [1/2], Iter [2059/3125], train_loss:0.105753
Epoch [1/2], Iter [2060/3125], train_loss:0.103096
Epoch [1/2], Iter [2061/3125], train_loss:0.133311
Epoch [1/2], Iter [2062/3125], train_loss:0.092937
Epoch [1/2], Iter [2063/3125], train_loss:0.132458
Epoch [1/2], Iter [2064/3125], train_loss:0.129511
Epoch [1/2], Iter [2065/3125], train_loss:0.120730
Epoch [1/2], Iter [2066/3125], train_loss:0.134831
Epoch [1/2], Iter [2067/3125], train_loss:0.101766
Epoch [1/2], Iter [2068/3125], train_loss:0.128740
Epoch [1/2], Iter [2069/3125], train_loss:0.122405
Epoch [1/2], Iter [2070/3125], train_loss:0.128550
Epoch [1/2], Iter [2071/3125], train_loss:0.101930
Epoch [1/2], Iter [2072/3125], train_loss:0.102552
Epoch [1/2], Iter [2073/3125], train_loss:0.076610
Epoch [1/2], Iter [2074/3125], train_loss:0.112972
Epoch [1/2], Iter [2075/3125], train_loss:0.103952
Epoch [1/2], Iter [2076/3125], train_loss:0.109852
Epoch [1/2], Iter [2077/3125], train_loss:0.113322
Epoch [1/2], Iter [2078/3125], train_loss:0.102785
Epoch [1/2], Iter [2079/3125], train_loss:0.090778
Epoch [1/2], Iter [2080/3125], train_loss:0.095918
Epoch [1/2], Iter [2081/3125], train_loss:0.116575
Epoch [1/2], Iter [2082/3125], train_loss:0.100046
Epoch [1/2], Iter [2083/3125], train_loss:0.089715
Epoch [1/2], Iter [2084/3125], train_loss:0.122666
Epoch [1/2], Iter [2085/3125], train_loss:0.129613
Epoch [1/2], Iter [2086/3125], train_loss:0.076697
Epoch [1/2], Iter [2087/3125], train_loss:0.093357
Epoch [1/2], Iter [2088/3125], train_loss:0.142714
Epoch [1/2], Iter [2089/3125], train_loss:0.124514
Epoch [1/2], Iter [2090/3125], train_loss:0.087637
Epoch [1/2], Iter [2091/3125], train_loss:0.102257
Epoch [1/2], Iter [2092/3125], train_loss:0.086186
Epoch [1/2], Iter [2093/3125], train_loss:0.093041
Epoch [1/2], Iter [2094/3125], train_loss:0.106152
Epoch [1/2], Iter [2095/3125], train_loss:0.140916
Epoch [1/2], Iter [2096/3125], train_loss:0.102147
Epoch [1/2], Iter [2097/3125], train_loss:0.126739
Epoch [1/2], Iter [2098/3125], train_loss:0.112947
Epoch [1/2], Iter [2099/3125], train_loss:0.118916
Epoch [1/2], Iter [2100/3125], train_loss:0.092814
Epoch [1/2], Iter [2101/3125], train_loss:0.119752
Epoch [1/2], Iter [2102/3125], train_loss:0.076538
Epoch [1/2], Iter [2103/3125], train_loss:0.096270
Epoch [1/2], Iter [2104/3125], train_loss:0.091702
Epoch [1/2], Iter [2105/3125], train_loss:0.143978
Epoch [1/2], Iter [2106/3125], train_loss:0.111897
Epoch [1/2], Iter [2107/3125], train_loss:0.089556
Epoch [1/2], Iter [2108/3125], train_loss:0.109824
Epoch [1/2], Iter [2109/3125], train_loss:0.099092
Epoch [1/2], Iter [2110/3125], train_loss:0.097747
Epoch [1/2], Iter [2111/3125], train_loss:0.146931
Epoch [1/2], Iter [2112/3125], train_loss:0.127117
Epoch [1/2], Iter [2113/3125], train_loss:0.108730
Epoch [1/2], Iter [2114/3125], train_loss:0.095239
Epoch [1/2], Iter [2115/3125], train_loss:0.083379
Epoch [1/2], Iter [2116/3125], train_loss:0.090572
Epoch [1/2], Iter [2117/3125], train_loss:0.096028
Epoch [1/2], Iter [2118/3125], train_loss:0.096893
Epoch [1/2], Iter [2119/3125], train_loss:0.114034
Epoch [1/2], Iter [2120/3125], train_loss:0.124006
Epoch [1/2], Iter [2121/3125], train_loss:0.125319
Epoch [1/2], Iter [2122/3125], train_loss:0.093370
Epoch [1/2], Iter [2123/3125], train_loss:0.094484
Epoch [1/2], Iter [2124/3125], train_loss:0.117593
Epoch [1/2], Iter [2125/3125], train_loss:0.088641
Epoch [1/2], Iter [2126/3125], train_loss:0.100637
Epoch [1/2], Iter [2127/3125], train_loss:0.125044
Epoch [1/2], Iter [2128/3125], train_loss:0.102803
Epoch [1/2], Iter [2129/3125], train_loss:0.100716
Epoch [1/2], Iter [2130/3125], train_loss:0.100396
Epoch [1/2], Iter [2131/3125], train_loss:0.110038
Epoch [1/2], Iter [2132/3125], train_loss:0.085658
Epoch [1/2], Iter [2133/3125], train_loss:0.111865
Epoch [1/2], Iter [2134/3125], train_loss:0.098088
Epoch [1/2], Iter [2135/3125], train_loss:0.075679
Epoch [1/2], Iter [2136/3125], train_loss:0.132928
Epoch [1/2], Iter [2137/3125], train_loss:0.116856
Epoch [1/2], Iter [2138/3125], train_loss:0.135806
Epoch [1/2], Iter [2139/3125], train_loss:0.133636
Epoch [1/2], Iter [2140/3125], train_loss:0.112448
Epoch [1/2], Iter [2141/3125], train_loss:0.118290
Epoch [1/2], Iter [2142/3125], train_loss:0.098431
Epoch [1/2], Iter [2143/3125], train_loss:0.071897
Epoch [1/2], Iter [2144/3125], train_loss:0.112979
Epoch [1/2], Iter [2145/3125], train_loss:0.085164
Epoch [1/2], Iter [2146/3125], train_loss:0.128800
Epoch [1/2], Iter [2147/3125], train_loss:0.081725
Epoch [1/2], Iter [2148/3125], train_loss:0.082943
Epoch [1/2], Iter [2149/3125], train_loss:0.111667
Epoch [1/2], Iter [2150/3125], train_loss:0.115756
Epoch [1/2], Iter [2151/3125], train_loss:0.079601
Epoch [1/2], Iter [2152/3125], train_loss:0.116097
Epoch [1/2], Iter [2153/3125], train_loss:0.116687
Epoch [1/2], Iter [2154/3125], train_loss:0.097041
Epoch [1/2], Iter [2155/3125], train_loss:0.089170
Epoch [1/2], Iter [2156/3125], train_loss:0.100973
Epoch [1/2], Iter [2157/3125], train_loss:0.097850
Epoch [1/2], Iter [2158/3125], train_loss:0.103660
Epoch [1/2], Iter [2159/3125], train_loss:0.108651
Epoch [1/2], Iter [2160/3125], train_loss:0.113844
Epoch [1/2], Iter [2161/3125], train_loss:0.093893
Epoch [1/2], Iter [2162/3125], train_loss:0.082955
Epoch [1/2], Iter [2163/3125], train_loss:0.128567
Epoch [1/2], Iter [2164/3125], train_loss:0.138731
Epoch [1/2], Iter [2165/3125], train_loss:0.133058
Epoch [1/2], Iter [2166/3125], train_loss:0.130054
Epoch [1/2], Iter [2167/3125], train_loss:0.108367
Epoch [1/2], Iter [2168/3125], train_loss:0.085435
Epoch [1/2], Iter [2169/3125], train_loss:0.118808
Epoch [1/2], Iter [2170/3125], train_loss:0.109687
Epoch [1/2], Iter [2171/3125], train_loss:0.104637
Epoch [1/2], Iter [2172/3125], train_loss:0.098688
Epoch [1/2], Iter [2173/3125], train_loss:0.100545
Epoch [1/2], Iter [2174/3125], train_loss:0.103489
Epoch [1/2], Iter [2175/3125], train_loss:0.110800
Epoch [1/2], Iter [2176/3125], train_loss:0.070940
Epoch [1/2], Iter [2177/3125], train_loss:0.085411
Epoch [1/2], Iter [2178/3125], train_loss:0.120935
Epoch [1/2], Iter [2179/3125], train_loss:0.089794
Epoch [1/2], Iter [2180/3125], train_loss:0.117729
Epoch [1/2], Iter [2181/3125], train_loss:0.142787
Epoch [1/2], Iter [2182/3125], train_loss:0.093391
Epoch [1/2], Iter [2183/3125], train_loss:0.116859
Epoch [1/2], Iter [2184/3125], train_loss:0.093596
Epoch [1/2], Iter [2185/3125], train_loss:0.083295
Epoch [1/2], Iter [2186/3125], train_loss:0.091943
Epoch [1/2], Iter [2187/3125], train_loss:0.126068
Epoch [1/2], Iter [2188/3125], train_loss:0.134602
Epoch [1/2], Iter [2189/3125], train_loss:0.114153
Epoch [1/2], Iter [2190/3125], train_loss:0.085646
Epoch [1/2], Iter [2191/3125], train_loss:0.087608
Epoch [1/2], Iter [2192/3125], train_loss:0.132938
Epoch [1/2], Iter [2193/3125], train_loss:0.093311
Epoch [1/2], Iter [2194/3125], train_loss:0.112723
Epoch [1/2], Iter [2195/3125], train_loss:0.107061
Epoch [1/2], Iter [2196/3125], train_loss:0.098063
Epoch [1/2], Iter [2197/3125], train_loss:0.105161
Epoch [1/2], Iter [2198/3125], train_loss:0.112891
Epoch [1/2], Iter [2199/3125], train_loss:0.087156
Epoch [1/2], Iter [2200/3125], train_loss:0.088423
Epoch [1/2], Iter [2201/3125], train_loss:0.113163
Epoch [1/2], Iter [2202/3125], train_loss:0.128250
Epoch [1/2], Iter [2203/3125], train_loss:0.113817
Epoch [1/2], Iter [2204/3125], train_loss:0.090483
Epoch [1/2], Iter [2205/3125], train_loss:0.082780
Epoch [1/2], Iter [2206/3125], train_loss:0.105257
Epoch [1/2], Iter [2207/3125], train_loss:0.102088
Epoch [1/2], Iter [2208/3125], train_loss:0.094012
Epoch [1/2], Iter [2209/3125], train_loss:0.135268
Epoch [1/2], Iter [2210/3125], train_loss:0.091043
Epoch [1/2], Iter [2211/3125], train_loss:0.086837
Epoch [1/2], Iter [2212/3125], train_loss:0.100739
Epoch [1/2], Iter [2213/3125], train_loss:0.089260
Epoch [1/2], Iter [2214/3125], train_loss:0.104809
Epoch [1/2], Iter [2215/3125], train_loss:0.111087
Epoch [1/2], Iter [2216/3125], train_loss:0.109913
Epoch [1/2], Iter [2217/3125], train_loss:0.144326
Epoch [1/2], Iter [2218/3125], train_loss:0.094746
Epoch [1/2], Iter [2219/3125], train_loss:0.127343
Epoch [1/2], Iter [2220/3125], train_loss:0.087044
Epoch [1/2], Iter [2221/3125], train_loss:0.123630
Epoch [1/2], Iter [2222/3125], train_loss:0.104947
Epoch [1/2], Iter [2223/3125], train_loss:0.110232
Epoch [1/2], Iter [2224/3125], train_loss:0.076661
Epoch [1/2], Iter [2225/3125], train_loss:0.134165
Epoch [1/2], Iter [2226/3125], train_loss:0.157577
Epoch [1/2], Iter [2227/3125], train_loss:0.094721
Epoch [1/2], Iter [2228/3125], train_loss:0.101042
Epoch [1/2], Iter [2229/3125], train_loss:0.096628
Epoch [1/2], Iter [2230/3125], train_loss:0.101660
Epoch [1/2], Iter [2231/3125], train_loss:0.087218
Epoch [1/2], Iter [2232/3125], train_loss:0.083415
Epoch [1/2], Iter [2233/3125], train_loss:0.100924
Epoch [1/2], Iter [2234/3125], train_loss:0.092865
Epoch [1/2], Iter [2235/3125], train_loss:0.118373
Epoch [1/2], Iter [2236/3125], train_loss:0.101207
Epoch [1/2], Iter [2237/3125], train_loss:0.084761
Epoch [1/2], Iter [2238/3125], train_loss:0.106357
Epoch [1/2], Iter [2239/3125], train_loss:0.118842
Epoch [1/2], Iter [2240/3125], train_loss:0.103979
Epoch [1/2], Iter [2241/3125], train_loss:0.125138
Epoch [1/2], Iter [2242/3125], train_loss:0.085798
Epoch [1/2], Iter [2243/3125], train_loss:0.102032
Epoch [1/2], Iter [2244/3125], train_loss:0.131359
Epoch [1/2], Iter [2245/3125], train_loss:0.099374
Epoch [1/2], Iter [2246/3125], train_loss:0.098269
Epoch [1/2], Iter [2247/3125], train_loss:0.091754
Epoch [1/2], Iter [2248/3125], train_loss:0.096370
Epoch [1/2], Iter [2249/3125], train_loss:0.126300
Epoch [1/2], Iter [2250/3125], train_loss:0.132058
Epoch [1/2], Iter [2251/3125], train_loss:0.084470
Epoch [1/2], Iter [2252/3125], train_loss:0.147128
Epoch [1/2], Iter [2253/3125], train_loss:0.069462
Epoch [1/2], Iter [2254/3125], train_loss:0.102953
Epoch [1/2], Iter [2255/3125], train_loss:0.123367
Epoch [1/2], Iter [2256/3125], train_loss:0.106619
Epoch [1/2], Iter [2257/3125], train_loss:0.088664
Epoch [1/2], Iter [2258/3125], train_loss:0.081543
Epoch [1/2], Iter [2259/3125], train_loss:0.120953
Epoch [1/2], Iter [2260/3125], train_loss:0.103699
Epoch [1/2], Iter [2261/3125], train_loss:0.099706
Epoch [1/2], Iter [2262/3125], train_loss:0.079738
Epoch [1/2], Iter [2263/3125], train_loss:0.100194
Epoch [1/2], Iter [2264/3125], train_loss:0.128680
Epoch [1/2], Iter [2265/3125], train_loss:0.131533
Epoch [1/2], Iter [2266/3125], train_loss:0.118202
Epoch [1/2], Iter [2267/3125], train_loss:0.094496
Epoch [1/2], Iter [2268/3125], train_loss:0.074186
Epoch [1/2], Iter [2269/3125], train_loss:0.095828
Epoch [1/2], Iter [2270/3125], train_loss:0.086729
Epoch [1/2], Iter [2271/3125], train_loss:0.079519
Epoch [1/2], Iter [2272/3125], train_loss:0.098425
Epoch [1/2], Iter [2273/3125], train_loss:0.093892
Epoch [1/2], Iter [2274/3125], train_loss:0.141978
Epoch [1/2], Iter [2275/3125], train_loss:0.118443
Epoch [1/2], Iter [2276/3125], train_loss:0.094937
Epoch [1/2], Iter [2277/3125], train_loss:0.119222
Epoch [1/2], Iter [2278/3125], train_loss:0.097568
Epoch [1/2], Iter [2279/3125], train_loss:0.102922
Epoch [1/2], Iter [2280/3125], train_loss:0.111276
Epoch [1/2], Iter [2281/3125], train_loss:0.089530
Epoch [1/2], Iter [2282/3125], train_loss:0.118905
Epoch [1/2], Iter [2283/3125], train_loss:0.086163
Epoch [1/2], Iter [2284/3125], train_loss:0.110971
Epoch [1/2], Iter [2285/3125], train_loss:0.112254
Epoch [1/2], Iter [2286/3125], train_loss:0.092250
Epoch [1/2], Iter [2287/3125], train_loss:0.106539
Epoch [1/2], Iter [2288/3125], train_loss:0.098029
Epoch [1/2], Iter [2289/3125], train_loss:0.103773
Epoch [1/2], Iter [2290/3125], train_loss:0.129419
Epoch [1/2], Iter [2291/3125], train_loss:0.098723
Epoch [1/2], Iter [2292/3125], train_loss:0.108025
Epoch [1/2], Iter [2293/3125], train_loss:0.124437
Epoch [1/2], Iter [2294/3125], train_loss:0.077301
Epoch [1/2], Iter [2295/3125], train_loss:0.114347
Epoch [1/2], Iter [2296/3125], train_loss:0.081775
Epoch [1/2], Iter [2297/3125], train_loss:0.115150
Epoch [1/2], Iter [2298/3125], train_loss:0.117596
Epoch [1/2], Iter [2299/3125], train_loss:0.105581
Epoch [1/2], Iter [2300/3125], train_loss:0.089893
Epoch [1/2], Iter [2301/3125], train_loss:0.131399
Epoch [1/2], Iter [2302/3125], train_loss:0.086729
Epoch [1/2], Iter [2303/3125], train_loss:0.101321
Epoch [1/2], Iter [2304/3125], train_loss:0.124556
Epoch [1/2], Iter [2305/3125], train_loss:0.108444
Epoch [1/2], Iter [2306/3125], train_loss:0.113353
Epoch [1/2], Iter [2307/3125], train_loss:0.104680
Epoch [1/2], Iter [2308/3125], train_loss:0.122059
Epoch [1/2], Iter [2309/3125], train_loss:0.090855
Epoch [1/2], Iter [2310/3125], train_loss:0.094236
Epoch [1/2], Iter [2311/3125], train_loss:0.108596
Epoch [1/2], Iter [2312/3125], train_loss:0.093419
Epoch [1/2], Iter [2313/3125], train_loss:0.083965
Epoch [1/2], Iter [2314/3125], train_loss:0.129653
Epoch [1/2], Iter [2315/3125], train_loss:0.100340
Epoch [1/2], Iter [2316/3125], train_loss:0.105309
Epoch [1/2], Iter [2317/3125], train_loss:0.104400
Epoch [1/2], Iter [2318/3125], train_loss:0.098583
Epoch [1/2], Iter [2319/3125], train_loss:0.111805
Epoch [1/2], Iter [2320/3125], train_loss:0.101948
Epoch [1/2], Iter [2321/3125], train_loss:0.105128
Epoch [1/2], Iter [2322/3125], train_loss:0.096615
Epoch [1/2], Iter [2323/3125], train_loss:0.126877
Epoch [1/2], Iter [2324/3125], train_loss:0.121535
Epoch [1/2], Iter [2325/3125], train_loss:0.098379
Epoch [1/2], Iter [2326/3125], train_loss:0.110792
Epoch [1/2], Iter [2327/3125], train_loss:0.097031
Epoch [1/2], Iter [2328/3125], train_loss:0.104541
Epoch [1/2], Iter [2329/3125], train_loss:0.084440
Epoch [1/2], Iter [2330/3125], train_loss:0.096462
Epoch [1/2], Iter [2331/3125], train_loss:0.097686
Epoch [1/2], Iter [2332/3125], train_loss:0.094296
Epoch [1/2], Iter [2333/3125], train_loss:0.119200
Epoch [1/2], Iter [2334/3125], train_loss:0.096054
Epoch [1/2], Iter [2335/3125], train_loss:0.114878
Epoch [1/2], Iter [2336/3125], train_loss:0.110496
Epoch [1/2], Iter [2337/3125], train_loss:0.099256
Epoch [1/2], Iter [2338/3125], train_loss:0.100970
Epoch [1/2], Iter [2339/3125], train_loss:0.128923
Epoch [1/2], Iter [2340/3125], train_loss:0.123876
Epoch [1/2], Iter [2341/3125], train_loss:0.125885
Epoch [1/2], Iter [2342/3125], train_loss:0.117648
Epoch [1/2], Iter [2343/3125], train_loss:0.118099
Epoch [1/2], Iter [2344/3125], train_loss:0.079732
Epoch [1/2], Iter [2345/3125], train_loss:0.086750
Epoch [1/2], Iter [2346/3125], train_loss:0.078172
Epoch [1/2], Iter [2347/3125], train_loss:0.163049
Epoch [1/2], Iter [2348/3125], train_loss:0.099812
Epoch [1/2], Iter [2349/3125], train_loss:0.094974
Epoch [1/2], Iter [2350/3125], train_loss:0.106246
Epoch [1/2], Iter [2351/3125], train_loss:0.095683
Epoch [1/2], Iter [2352/3125], train_loss:0.125036
Epoch [1/2], Iter [2353/3125], train_loss:0.105502
Epoch [1/2], Iter [2354/3125], train_loss:0.096412
Epoch [1/2], Iter [2355/3125], train_loss:0.121308
Epoch [1/2], Iter [2356/3125], train_loss:0.109995
Epoch [1/2], Iter [2357/3125], train_loss:0.082690
Epoch [1/2], Iter [2358/3125], train_loss:0.091900
Epoch [1/2], Iter [2359/3125], train_loss:0.117589
Epoch [1/2], Iter [2360/3125], train_loss:0.102684
Epoch [1/2], Iter [2361/3125], train_loss:0.086352
Epoch [1/2], Iter [2362/3125], train_loss:0.093263
Epoch [1/2], Iter [2363/3125], train_loss:0.119629
Epoch [1/2], Iter [2364/3125], train_loss:0.067344
Epoch [1/2], Iter [2365/3125], train_loss:0.141182
Epoch [1/2], Iter [2366/3125], train_loss:0.097096
Epoch [1/2], Iter [2367/3125], train_loss:0.107365
Epoch [1/2], Iter [2368/3125], train_loss:0.103708
Epoch [1/2], Iter [2369/3125], train_loss:0.115419
Epoch [1/2], Iter [2370/3125], train_loss:0.100928
Epoch [1/2], Iter [2371/3125], train_loss:0.123152
Epoch [1/2], Iter [2372/3125], train_loss:0.093848
Epoch [1/2], Iter [2373/3125], train_loss:0.084897
Epoch [1/2], Iter [2374/3125], train_loss:0.094672
Epoch [1/2], Iter [2375/3125], train_loss:0.114151
Epoch [1/2], Iter [2376/3125], train_loss:0.071165
Epoch [1/2], Iter [2377/3125], train_loss:0.113670
Epoch [1/2], Iter [2378/3125], train_loss:0.085005
Epoch [1/2], Iter [2379/3125], train_loss:0.131933
Epoch [1/2], Iter [2380/3125], train_loss:0.110527
Epoch [1/2], Iter [2381/3125], train_loss:0.086547
Epoch [1/2], Iter [2382/3125], train_loss:0.125244
Epoch [1/2], Iter [2383/3125], train_loss:0.087366
Epoch [1/2], Iter [2384/3125], train_loss:0.096163
Epoch [1/2], Iter [2385/3125], train_loss:0.076568
Epoch [1/2], Iter [2386/3125], train_loss:0.089735
Epoch [1/2], Iter [2387/3125], train_loss:0.088792
Epoch [1/2], Iter [2388/3125], train_loss:0.099147
Epoch [1/2], Iter [2389/3125], train_loss:0.083492
Epoch [1/2], Iter [2390/3125], train_loss:0.100325
Epoch [1/2], Iter [2391/3125], train_loss:0.086110
Epoch [1/2], Iter [2392/3125], train_loss:0.102520
Epoch [1/2], Iter [2393/3125], train_loss:0.099782
Epoch [1/2], Iter [2394/3125], train_loss:0.095551
Epoch [1/2], Iter [2395/3125], train_loss:0.092597
Epoch [1/2], Iter [2396/3125], train_loss:0.102948
Epoch [1/2], Iter [2397/3125], train_loss:0.090320
Epoch [1/2], Iter [2398/3125], train_loss:0.105069
Epoch [1/2], Iter [2399/3125], train_loss:0.133147
Epoch [1/2], Iter [2400/3125], train_loss:0.121134
Epoch [1/2], Iter [2401/3125], train_loss:0.126426
Epoch [1/2], Iter [2402/3125], train_loss:0.112873
Epoch [1/2], Iter [2403/3125], train_loss:0.095190
Epoch [1/2], Iter [2404/3125], train_loss:0.111614
Epoch [1/2], Iter [2405/3125], train_loss:0.134615
Epoch [1/2], Iter [2406/3125], train_loss:0.079283
Epoch [1/2], Iter [2407/3125], train_loss:0.099310
Epoch [1/2], Iter [2408/3125], train_loss:0.100244
Epoch [1/2], Iter [2409/3125], train_loss:0.111877
Epoch [1/2], Iter [2410/3125], train_loss:0.108714
Epoch [1/2], Iter [2411/3125], train_loss:0.078524
Epoch [1/2], Iter [2412/3125], train_loss:0.091149
Epoch [1/2], Iter [2413/3125], train_loss:0.105475
Epoch [1/2], Iter [2414/3125], train_loss:0.122295
Epoch [1/2], Iter [2415/3125], train_loss:0.144343
Epoch [1/2], Iter [2416/3125], train_loss:0.104529
Epoch [1/2], Iter [2417/3125], train_loss:0.124823
Epoch [1/2], Iter [2418/3125], train_loss:0.106808
Epoch [1/2], Iter [2419/3125], train_loss:0.117653
Epoch [1/2], Iter [2420/3125], train_loss:0.123505
Epoch [1/2], Iter [2421/3125], train_loss:0.114044
Epoch [1/2], Iter [2422/3125], train_loss:0.109120
Epoch [1/2], Iter [2423/3125], train_loss:0.111892
Epoch [1/2], Iter [2424/3125], train_loss:0.137719
Epoch [1/2], Iter [2425/3125], train_loss:0.117109
Epoch [1/2], Iter [2426/3125], train_loss:0.093619
Epoch [1/2], Iter [2427/3125], train_loss:0.073259
Epoch [1/2], Iter [2428/3125], train_loss:0.135654
Epoch [1/2], Iter [2429/3125], train_loss:0.103028
Epoch [1/2], Iter [2430/3125], train_loss:0.097963
Epoch [1/2], Iter [2431/3125], train_loss:0.105301
Epoch [1/2], Iter [2432/3125], train_loss:0.125698
Epoch [1/2], Iter [2433/3125], train_loss:0.097532
Epoch [1/2], Iter [2434/3125], train_loss:0.103793
Epoch [1/2], Iter [2435/3125], train_loss:0.112252
Epoch [1/2], Iter [2436/3125], train_loss:0.118567
Epoch [1/2], Iter [2437/3125], train_loss:0.095079
Epoch [1/2], Iter [2438/3125], train_loss:0.089631
Epoch [1/2], Iter [2439/3125], train_loss:0.095069
Epoch [1/2], Iter [2440/3125], train_loss:0.108419
Epoch [1/2], Iter [2441/3125], train_loss:0.112826
Epoch [1/2], Iter [2442/3125], train_loss:0.111640
Epoch [1/2], Iter [2443/3125], train_loss:0.113391
Epoch [1/2], Iter [2444/3125], train_loss:0.131918
Epoch [1/2], Iter [2445/3125], train_loss:0.076390
Epoch [1/2], Iter [2446/3125], train_loss:0.101470
Epoch [1/2], Iter [2447/3125], train_loss:0.085170
Epoch [1/2], Iter [2448/3125], train_loss:0.089206
Epoch [1/2], Iter [2449/3125], train_loss:0.099683
Epoch [1/2], Iter [2450/3125], train_loss:0.086865
Epoch [1/2], Iter [2451/3125], train_loss:0.128651
Epoch [1/2], Iter [2452/3125], train_loss:0.090884
Epoch [1/2], Iter [2453/3125], train_loss:0.106414
Epoch [1/2], Iter [2454/3125], train_loss:0.127482
Epoch [1/2], Iter [2455/3125], train_loss:0.076910
Epoch [1/2], Iter [2456/3125], train_loss:0.107479
Epoch [1/2], Iter [2457/3125], train_loss:0.079879
Epoch [1/2], Iter [2458/3125], train_loss:0.075093
Epoch [1/2], Iter [2459/3125], train_loss:0.080941
Epoch [1/2], Iter [2460/3125], train_loss:0.105018
Epoch [1/2], Iter [2461/3125], train_loss:0.090048
Epoch [1/2], Iter [2462/3125], train_loss:0.082398
Epoch [1/2], Iter [2463/3125], train_loss:0.117726
Epoch [1/2], Iter [2464/3125], train_loss:0.107102
Epoch [1/2], Iter [2465/3125], train_loss:0.141708
Epoch [1/2], Iter [2466/3125], train_loss:0.123104
Epoch [1/2], Iter [2467/3125], train_loss:0.099922
Epoch [1/2], Iter [2468/3125], train_loss:0.133417
Epoch [1/2], Iter [2469/3125], train_loss:0.110525
Epoch [1/2], Iter [2470/3125], train_loss:0.110006
Epoch [1/2], Iter [2471/3125], train_loss:0.090452
Epoch [1/2], Iter [2472/3125], train_loss:0.119548
Epoch [1/2], Iter [2473/3125], train_loss:0.132476
Epoch [1/2], Iter [2474/3125], train_loss:0.097383
Epoch [1/2], Iter [2475/3125], train_loss:0.110065
Epoch [1/2], Iter [2476/3125], train_loss:0.104751
Epoch [1/2], Iter [2477/3125], train_loss:0.085099
Epoch [1/2], Iter [2478/3125], train_loss:0.101220
Epoch [1/2], Iter [2479/3125], train_loss:0.088360
Epoch [1/2], Iter [2480/3125], train_loss:0.072771
Epoch [1/2], Iter [2481/3125], train_loss:0.087658
Epoch [1/2], Iter [2482/3125], train_loss:0.095933
Epoch [1/2], Iter [2483/3125], train_loss:0.108177
Epoch [1/2], Iter [2484/3125], train_loss:0.115885
Epoch [1/2], Iter [2485/3125], train_loss:0.101371
Epoch [1/2], Iter [2486/3125], train_loss:0.115408
Epoch [1/2], Iter [2487/3125], train_loss:0.084674
Epoch [1/2], Iter [2488/3125], train_loss:0.102107
Epoch [1/2], Iter [2489/3125], train_loss:0.076870
Epoch [1/2], Iter [2490/3125], train_loss:0.134582
Epoch [1/2], Iter [2491/3125], train_loss:0.111436
Epoch [1/2], Iter [2492/3125], train_loss:0.125878
Epoch [1/2], Iter [2493/3125], train_loss:0.129740
Epoch [1/2], Iter [2494/3125], train_loss:0.080612
Epoch [1/2], Iter [2495/3125], train_loss:0.130665
Epoch [1/2], Iter [2496/3125], train_loss:0.074256
Epoch [1/2], Iter [2497/3125], train_loss:0.139712
Epoch [1/2], Iter [2498/3125], train_loss:0.117353
Epoch [1/2], Iter [2499/3125], train_loss:0.119585
Epoch [1/2], Iter [2500/3125], train_loss:0.102869
Epoch [1/2], Iter [2501/3125], train_loss:0.095046
Epoch [1/2], Iter [2502/3125], train_loss:0.117398
Epoch [1/2], Iter [2503/3125], train_loss:0.111420
Epoch [1/2], Iter [2504/3125], train_loss:0.167339
Epoch [1/2], Iter [2505/3125], train_loss:0.113016
Epoch [1/2], Iter [2506/3125], train_loss:0.094196
Epoch [1/2], Iter [2507/3125], train_loss:0.096952
Epoch [1/2], Iter [2508/3125], train_loss:0.111106
Epoch [1/2], Iter [2509/3125], train_loss:0.089056
Epoch [1/2], Iter [2510/3125], train_loss:0.109800
Epoch [1/2], Iter [2511/3125], train_loss:0.086686
Epoch [1/2], Iter [2512/3125], train_loss:0.092258
Epoch [1/2], Iter [2513/3125], train_loss:0.076557
Epoch [1/2], Iter [2514/3125], train_loss:0.091248
Epoch [1/2], Iter [2515/3125], train_loss:0.093275
Epoch [1/2], Iter [2516/3125], train_loss:0.106473
Epoch [1/2], Iter [2517/3125], train_loss:0.094642
Epoch [1/2], Iter [2518/3125], train_loss:0.138280
Epoch [1/2], Iter [2519/3125], train_loss:0.098989
Epoch [1/2], Iter [2520/3125], train_loss:0.095182
Epoch [1/2], Iter [2521/3125], train_loss:0.107335
Epoch [1/2], Iter [2522/3125], train_loss:0.079086
Epoch [1/2], Iter [2523/3125], train_loss:0.086730
Epoch [1/2], Iter [2524/3125], train_loss:0.124144
Epoch [1/2], Iter [2525/3125], train_loss:0.094952
Epoch [1/2], Iter [2526/3125], train_loss:0.117466
Epoch [1/2], Iter [2527/3125], train_loss:0.109298
Epoch [1/2], Iter [2528/3125], train_loss:0.116636
Epoch [1/2], Iter [2529/3125], train_loss:0.096603
Epoch [1/2], Iter [2530/3125], train_loss:0.089863
Epoch [1/2], Iter [2531/3125], train_loss:0.090743
Epoch [1/2], Iter [2532/3125], train_loss:0.104793
Epoch [1/2], Iter [2533/3125], train_loss:0.114171
Epoch [1/2], Iter [2534/3125], train_loss:0.078191
Epoch [1/2], Iter [2535/3125], train_loss:0.075855
Epoch [1/2], Iter [2536/3125], train_loss:0.092886
Epoch [1/2], Iter [2537/3125], train_loss:0.084237
Epoch [1/2], Iter [2538/3125], train_loss:0.076853
Epoch [1/2], Iter [2539/3125], train_loss:0.099303
Epoch [1/2], Iter [2540/3125], train_loss:0.104977
Epoch [1/2], Iter [2541/3125], train_loss:0.122457
Epoch [1/2], Iter [2542/3125], train_loss:0.109284
Epoch [1/2], Iter [2543/3125], train_loss:0.099003
Epoch [1/2], Iter [2544/3125], train_loss:0.136708
Epoch [1/2], Iter [2545/3125], train_loss:0.097537
Epoch [1/2], Iter [2546/3125], train_loss:0.092581
Epoch [1/2], Iter [2547/3125], train_loss:0.084615
Epoch [1/2], Iter [2548/3125], train_loss:0.109484
Epoch [1/2], Iter [2549/3125], train_loss:0.065603
Epoch [1/2], Iter [2550/3125], train_loss:0.088243
Epoch [1/2], Iter [2551/3125], train_loss:0.091456
Epoch [1/2], Iter [2552/3125], train_loss:0.123616
Epoch [1/2], Iter [2553/3125], train_loss:0.094322
Epoch [1/2], Iter [2554/3125], train_loss:0.110907
Epoch [1/2], Iter [2555/3125], train_loss:0.112595
Epoch [1/2], Iter [2556/3125], train_loss:0.086224
Epoch [1/2], Iter [2557/3125], train_loss:0.137138
Epoch [1/2], Iter [2558/3125], train_loss:0.143773
Epoch [1/2], Iter [2559/3125], train_loss:0.127415
Epoch [1/2], Iter [2560/3125], train_loss:0.083331
Epoch [1/2], Iter [2561/3125], train_loss:0.117575
Epoch [1/2], Iter [2562/3125], train_loss:0.079147
Epoch [1/2], Iter [2563/3125], train_loss:0.094432
Epoch [1/2], Iter [2564/3125], train_loss:0.087761
Epoch [1/2], Iter [2565/3125], train_loss:0.081774
Epoch [1/2], Iter [2566/3125], train_loss:0.102274
Epoch [1/2], Iter [2567/3125], train_loss:0.089861
Epoch [1/2], Iter [2568/3125], train_loss:0.088501
Epoch [1/2], Iter [2569/3125], train_loss:0.104001
Epoch [1/2], Iter [2570/3125], train_loss:0.066133
Epoch [1/2], Iter [2571/3125], train_loss:0.080712
Epoch [1/2], Iter [2572/3125], train_loss:0.099983
Epoch [1/2], Iter [2573/3125], train_loss:0.106127
Epoch [1/2], Iter [2574/3125], train_loss:0.094524
Epoch [1/2], Iter [2575/3125], train_loss:0.084537
Epoch [1/2], Iter [2576/3125], train_loss:0.102242
Epoch [1/2], Iter [2577/3125], train_loss:0.111313
Epoch [1/2], Iter [2578/3125], train_loss:0.106967
Epoch [1/2], Iter [2579/3125], train_loss:0.084365
Epoch [1/2], Iter [2580/3125], train_loss:0.122814
Epoch [1/2], Iter [2581/3125], train_loss:0.097958
Epoch [1/2], Iter [2582/3125], train_loss:0.116795
Epoch [1/2], Iter [2583/3125], train_loss:0.103559
Epoch [1/2], Iter [2584/3125], train_loss:0.109728
Epoch [1/2], Iter [2585/3125], train_loss:0.108031
Epoch [1/2], Iter [2586/3125], train_loss:0.107263
Epoch [1/2], Iter [2587/3125], train_loss:0.076199
Epoch [1/2], Iter [2588/3125], train_loss:0.124672
Epoch [1/2], Iter [2589/3125], train_loss:0.089102
Epoch [1/2], Iter [2590/3125], train_loss:0.105508
Epoch [1/2], Iter [2591/3125], train_loss:0.117493
Epoch [1/2], Iter [2592/3125], train_loss:0.095886
Epoch [1/2], Iter [2593/3125], train_loss:0.113637
Epoch [1/2], Iter [2594/3125], train_loss:0.112449
Epoch [1/2], Iter [2595/3125], train_loss:0.089482
Epoch [1/2], Iter [2596/3125], train_loss:0.087168
Epoch [1/2], Iter [2597/3125], train_loss:0.090498
Epoch [1/2], Iter [2598/3125], train_loss:0.085577
Epoch [1/2], Iter [2599/3125], train_loss:0.097302
Epoch [1/2], Iter [2600/3125], train_loss:0.088938
Epoch [1/2], Iter [2601/3125], train_loss:0.115304
Epoch [1/2], Iter [2602/3125], train_loss:0.133274
Epoch [1/2], Iter [2603/3125], train_loss:0.145121
Epoch [1/2], Iter [2604/3125], train_loss:0.084187
Epoch [1/2], Iter [2605/3125], train_loss:0.129197
Epoch [1/2], Iter [2606/3125], train_loss:0.093822
Epoch [1/2], Iter [2607/3125], train_loss:0.101598
Epoch [1/2], Iter [2608/3125], train_loss:0.140341
Epoch [1/2], Iter [2609/3125], train_loss:0.115032
Epoch [1/2], Iter [2610/3125], train_loss:0.120124
Epoch [1/2], Iter [2611/3125], train_loss:0.110905
Epoch [1/2], Iter [2612/3125], train_loss:0.089199
Epoch [1/2], Iter [2613/3125], train_loss:0.104073
Epoch [1/2], Iter [2614/3125], train_loss:0.100672
Epoch [1/2], Iter [2615/3125], train_loss:0.111184
Epoch [1/2], Iter [2616/3125], train_loss:0.109902
Epoch [1/2], Iter [2617/3125], train_loss:0.098068
Epoch [1/2], Iter [2618/3125], train_loss:0.097632
Epoch [1/2], Iter [2619/3125], train_loss:0.085194
Epoch [1/2], Iter [2620/3125], train_loss:0.111314
Epoch [1/2], Iter [2621/3125], train_loss:0.097633
Epoch [1/2], Iter [2622/3125], train_loss:0.101432
Epoch [1/2], Iter [2623/3125], train_loss:0.084576
Epoch [1/2], Iter [2624/3125], train_loss:0.113484
Epoch [1/2], Iter [2625/3125], train_loss:0.089233
Epoch [1/2], Iter [2626/3125], train_loss:0.117646
Epoch [1/2], Iter [2627/3125], train_loss:0.092150
Epoch [1/2], Iter [2628/3125], train_loss:0.104805
Epoch [1/2], Iter [2629/3125], train_loss:0.110383
Epoch [1/2], Iter [2630/3125], train_loss:0.109359
Epoch [1/2], Iter [2631/3125], train_loss:0.093776
Epoch [1/2], Iter [2632/3125], train_loss:0.085401
Epoch [1/2], Iter [2633/3125], train_loss:0.083766
Epoch [1/2], Iter [2634/3125], train_loss:0.108508
Epoch [1/2], Iter [2635/3125], train_loss:0.093779
Epoch [1/2], Iter [2636/3125], train_loss:0.087341
Epoch [1/2], Iter [2637/3125], train_loss:0.123160
Epoch [1/2], Iter [2638/3125], train_loss:0.098978
Epoch [1/2], Iter [2639/3125], train_loss:0.146915
Epoch [1/2], Iter [2640/3125], train_loss:0.119571
Epoch [1/2], Iter [2641/3125], train_loss:0.106984
Epoch [1/2], Iter [2642/3125], train_loss:0.103030
Epoch [1/2], Iter [2643/3125], train_loss:0.117886
Epoch [1/2], Iter [2644/3125], train_loss:0.106485
Epoch [1/2], Iter [2645/3125], train_loss:0.127798
Epoch [1/2], Iter [2646/3125], train_loss:0.136132
Epoch [1/2], Iter [2647/3125], train_loss:0.111808
Epoch [1/2], Iter [2648/3125], train_loss:0.135164
Epoch [1/2], Iter [2649/3125], train_loss:0.081889
Epoch [1/2], Iter [2650/3125], train_loss:0.097605
Epoch [1/2], Iter [2651/3125], train_loss:0.114722
Epoch [1/2], Iter [2652/3125], train_loss:0.108491
Epoch [1/2], Iter [2653/3125], train_loss:0.100734
Epoch [1/2], Iter [2654/3125], train_loss:0.123039
Epoch [1/2], Iter [2655/3125], train_loss:0.111583
Epoch [1/2], Iter [2656/3125], train_loss:0.107290
Epoch [1/2], Iter [2657/3125], train_loss:0.108501
Epoch [1/2], Iter [2658/3125], train_loss:0.078135
Epoch [1/2], Iter [2659/3125], train_loss:0.085771
Epoch [1/2], Iter [2660/3125], train_loss:0.107128
Epoch [1/2], Iter [2661/3125], train_loss:0.095131
Epoch [1/2], Iter [2662/3125], train_loss:0.085456
Epoch [1/2], Iter [2663/3125], train_loss:0.112023
Epoch [1/2], Iter [2664/3125], train_loss:0.074527
Epoch [1/2], Iter [2665/3125], train_loss:0.098176
Epoch [1/2], Iter [2666/3125], train_loss:0.134337
Epoch [1/2], Iter [2667/3125], train_loss:0.079310
Epoch [1/2], Iter [2668/3125], train_loss:0.128383
Epoch [1/2], Iter [2669/3125], train_loss:0.063737
Epoch [1/2], Iter [2670/3125], train_loss:0.116620
Epoch [1/2], Iter [2671/3125], train_loss:0.109515
Epoch [1/2], Iter [2672/3125], train_loss:0.105551
Epoch [1/2], Iter [2673/3125], train_loss:0.106442
Epoch [1/2], Iter [2674/3125], train_loss:0.108208
Epoch [1/2], Iter [2675/3125], train_loss:0.092038
Epoch [1/2], Iter [2676/3125], train_loss:0.067518
Epoch [1/2], Iter [2677/3125], train_loss:0.108449
Epoch [1/2], Iter [2678/3125], train_loss:0.063891
Epoch [1/2], Iter [2679/3125], train_loss:0.097295
Epoch [1/2], Iter [2680/3125], train_loss:0.100544
Epoch [1/2], Iter [2681/3125], train_loss:0.059329
Epoch [1/2], Iter [2682/3125], train_loss:0.109202
Epoch [1/2], Iter [2683/3125], train_loss:0.099770
Epoch [1/2], Iter [2684/3125], train_loss:0.104589
Epoch [1/2], Iter [2685/3125], train_loss:0.080295
Epoch [1/2], Iter [2686/3125], train_loss:0.120223
Epoch [1/2], Iter [2687/3125], train_loss:0.078997
Epoch [1/2], Iter [2688/3125], train_loss:0.089128
Epoch [1/2], Iter [2689/3125], train_loss:0.112341
Epoch [1/2], Iter [2690/3125], train_loss:0.122444
Epoch [1/2], Iter [2691/3125], train_loss:0.092515
Epoch [1/2], Iter [2692/3125], train_loss:0.088293
Epoch [1/2], Iter [2693/3125], train_loss:0.091151
Epoch [1/2], Iter [2694/3125], train_loss:0.095652
Epoch [1/2], Iter [2695/3125], train_loss:0.100625
Epoch [1/2], Iter [2696/3125], train_loss:0.124390
Epoch [1/2], Iter [2697/3125], train_loss:0.108469
Epoch [1/2], Iter [2698/3125], train_loss:0.092776
Epoch [1/2], Iter [2699/3125], train_loss:0.115473
Epoch [1/2], Iter [2700/3125], train_loss:0.118285
Epoch [1/2], Iter [2701/3125], train_loss:0.070639
Epoch [1/2], Iter [2702/3125], train_loss:0.099144
Epoch [1/2], Iter [2703/3125], train_loss:0.071117
Epoch [1/2], Iter [2704/3125], train_loss:0.085093
Epoch [1/2], Iter [2705/3125], train_loss:0.087064
Epoch [1/2], Iter [2706/3125], train_loss:0.089685
Epoch [1/2], Iter [2707/3125], train_loss:0.105608
Epoch [1/2], Iter [2708/3125], train_loss:0.116224
Epoch [1/2], Iter [2709/3125], train_loss:0.092343
Epoch [1/2], Iter [2710/3125], train_loss:0.084557
Epoch [1/2], Iter [2711/3125], train_loss:0.092652
Epoch [1/2], Iter [2712/3125], train_loss:0.083277
Epoch [1/2], Iter [2713/3125], train_loss:0.113801
Epoch [1/2], Iter [2714/3125], train_loss:0.110867
Epoch [1/2], Iter [2715/3125], train_loss:0.118209
Epoch [1/2], Iter [2716/3125], train_loss:0.104623
Epoch [1/2], Iter [2717/3125], train_loss:0.095704
Epoch [1/2], Iter [2718/3125], train_loss:0.104851
Epoch [1/2], Iter [2719/3125], train_loss:0.118780
Epoch [1/2], Iter [2720/3125], train_loss:0.090578
Epoch [1/2], Iter [2721/3125], train_loss:0.141892
Epoch [1/2], Iter [2722/3125], train_loss:0.110100
Epoch [1/2], Iter [2723/3125], train_loss:0.119053
Epoch [1/2], Iter [2724/3125], train_loss:0.087268
Epoch [1/2], Iter [2725/3125], train_loss:0.122059
Epoch [1/2], Iter [2726/3125], train_loss:0.148750
Epoch [1/2], Iter [2727/3125], train_loss:0.123954
Epoch [1/2], Iter [2728/3125], train_loss:0.124976
Epoch [1/2], Iter [2729/3125], train_loss:0.089132
Epoch [1/2], Iter [2730/3125], train_loss:0.089235
Epoch [1/2], Iter [2731/3125], train_loss:0.123030
Epoch [1/2], Iter [2732/3125], train_loss:0.105519
Epoch [1/2], Iter [2733/3125], train_loss:0.106100
Epoch [1/2], Iter [2734/3125], train_loss:0.106303
Epoch [1/2], Iter [2735/3125], train_loss:0.094615
Epoch [1/2], Iter [2736/3125], train_loss:0.133672
Epoch [1/2], Iter [2737/3125], train_loss:0.103516
Epoch [1/2], Iter [2738/3125], train_loss:0.150776
Epoch [1/2], Iter [2739/3125], train_loss:0.087098
Epoch [1/2], Iter [2740/3125], train_loss:0.116379
Epoch [1/2], Iter [2741/3125], train_loss:0.102303
Epoch [1/2], Iter [2742/3125], train_loss:0.094834
Epoch [1/2], Iter [2743/3125], train_loss:0.089663
Epoch [1/2], Iter [2744/3125], train_loss:0.092802
Epoch [1/2], Iter [2745/3125], train_loss:0.110069
Epoch [1/2], Iter [2746/3125], train_loss:0.110816
Epoch [1/2], Iter [2747/3125], train_loss:0.127739
Epoch [1/2], Iter [2748/3125], train_loss:0.084715
Epoch [1/2], Iter [2749/3125], train_loss:0.101412
Epoch [1/2], Iter [2750/3125], train_loss:0.081077
Epoch [1/2], Iter [2751/3125], train_loss:0.111492
Epoch [1/2], Iter [2752/3125], train_loss:0.100451
Epoch [1/2], Iter [2753/3125], train_loss:0.087303
Epoch [1/2], Iter [2754/3125], train_loss:0.093413
Epoch [1/2], Iter [2755/3125], train_loss:0.112628
Epoch [1/2], Iter [2756/3125], train_loss:0.111557
Epoch [1/2], Iter [2757/3125], train_loss:0.109847
Epoch [1/2], Iter [2758/3125], train_loss:0.101618
Epoch [1/2], Iter [2759/3125], train_loss:0.089157
Epoch [1/2], Iter [2760/3125], train_loss:0.113698
Epoch [1/2], Iter [2761/3125], train_loss:0.091779
Epoch [1/2], Iter [2762/3125], train_loss:0.079673
Epoch [1/2], Iter [2763/3125], train_loss:0.103621
Epoch [1/2], Iter [2764/3125], train_loss:0.082735
Epoch [1/2], Iter [2765/3125], train_loss:0.105204
Epoch [1/2], Iter [2766/3125], train_loss:0.086259
Epoch [1/2], Iter [2767/3125], train_loss:0.123802
Epoch [1/2], Iter [2768/3125], train_loss:0.099351
Epoch [1/2], Iter [2769/3125], train_loss:0.109434
Epoch [1/2], Iter [2770/3125], train_loss:0.090484
Epoch [1/2], Iter [2771/3125], train_loss:0.121009
Epoch [1/2], Iter [2772/3125], train_loss:0.112087
Epoch [1/2], Iter [2773/3125], train_loss:0.107433
Epoch [1/2], Iter [2774/3125], train_loss:0.105113
Epoch [1/2], Iter [2775/3125], train_loss:0.118956
Epoch [1/2], Iter [2776/3125], train_loss:0.112925
Epoch [1/2], Iter [2777/3125], train_loss:0.100105
Epoch [1/2], Iter [2778/3125], train_loss:0.092404
Epoch [1/2], Iter [2779/3125], train_loss:0.098456
Epoch [1/2], Iter [2780/3125], train_loss:0.122263
Epoch [1/2], Iter [2781/3125], train_loss:0.107635
Epoch [1/2], Iter [2782/3125], train_loss:0.080257
Epoch [1/2], Iter [2783/3125], train_loss:0.093349
Epoch [1/2], Iter [2784/3125], train_loss:0.083886
Epoch [1/2], Iter [2785/3125], train_loss:0.103770
Epoch [1/2], Iter [2786/3125], train_loss:0.099667
Epoch [1/2], Iter [2787/3125], train_loss:0.114459
Epoch [1/2], Iter [2788/3125], train_loss:0.133057
Epoch [1/2], Iter [2789/3125], train_loss:0.086533
Epoch [1/2], Iter [2790/3125], train_loss:0.110268
Epoch [1/2], Iter [2791/3125], train_loss:0.101292
Epoch [1/2], Iter [2792/3125], train_loss:0.091083
Epoch [1/2], Iter [2793/3125], train_loss:0.092543
Epoch [1/2], Iter [2794/3125], train_loss:0.108981
Epoch [1/2], Iter [2795/3125], train_loss:0.096629
Epoch [1/2], Iter [2796/3125], train_loss:0.111024
Epoch [1/2], Iter [2797/3125], train_loss:0.103886
Epoch [1/2], Iter [2798/3125], train_loss:0.061455
Epoch [1/2], Iter [2799/3125], train_loss:0.094047
Epoch [1/2], Iter [2800/3125], train_loss:0.090577
Epoch [1/2], Iter [2801/3125], train_loss:0.089855
Epoch [1/2], Iter [2802/3125], train_loss:0.113875
Epoch [1/2], Iter [2803/3125], train_loss:0.107555
Epoch [1/2], Iter [2804/3125], train_loss:0.091442
Epoch [1/2], Iter [2805/3125], train_loss:0.121512
Epoch [1/2], Iter [2806/3125], train_loss:0.102267
Epoch [1/2], Iter [2807/3125], train_loss:0.113485
Epoch [1/2], Iter [2808/3125], train_loss:0.085101
Epoch [1/2], Iter [2809/3125], train_loss:0.123058
Epoch [1/2], Iter [2810/3125], train_loss:0.106300
Epoch [1/2], Iter [2811/3125], train_loss:0.100239
Epoch [1/2], Iter [2812/3125], train_loss:0.084932
Epoch [1/2], Iter [2813/3125], train_loss:0.121454
Epoch [1/2], Iter [2814/3125], train_loss:0.103186
Epoch [1/2], Iter [2815/3125], train_loss:0.116744
Epoch [1/2], Iter [2816/3125], train_loss:0.078205
Epoch [1/2], Iter [2817/3125], train_loss:0.118746
Epoch [1/2], Iter [2818/3125], train_loss:0.099491
Epoch [1/2], Iter [2819/3125], train_loss:0.084959
Epoch [1/2], Iter [2820/3125], train_loss:0.098084
Epoch [1/2], Iter [2821/3125], train_loss:0.076564
Epoch [1/2], Iter [2822/3125], train_loss:0.108699
Epoch [1/2], Iter [2823/3125], train_loss:0.092791
Epoch [1/2], Iter [2824/3125], train_loss:0.111765
Epoch [1/2], Iter [2825/3125], train_loss:0.082965
Epoch [1/2], Iter [2826/3125], train_loss:0.090465
Epoch [1/2], Iter [2827/3125], train_loss:0.115320
Epoch [1/2], Iter [2828/3125], train_loss:0.120692
Epoch [1/2], Iter [2829/3125], train_loss:0.123300
Epoch [1/2], Iter [2830/3125], train_loss:0.105747
Epoch [1/2], Iter [2831/3125], train_loss:0.109113
Epoch [1/2], Iter [2832/3125], train_loss:0.107350
Epoch [1/2], Iter [2833/3125], train_loss:0.106788
Epoch [1/2], Iter [2834/3125], train_loss:0.099931
Epoch [1/2], Iter [2835/3125], train_loss:0.098998
Epoch [1/2], Iter [2836/3125], train_loss:0.122916
Epoch [1/2], Iter [2837/3125], train_loss:0.121324
Epoch [1/2], Iter [2838/3125], train_loss:0.080634
Epoch [1/2], Iter [2839/3125], train_loss:0.116525
Epoch [1/2], Iter [2840/3125], train_loss:0.095675
Epoch [1/2], Iter [2841/3125], train_loss:0.084981
Epoch [1/2], Iter [2842/3125], train_loss:0.087895
Epoch [1/2], Iter [2843/3125], train_loss:0.115805
Epoch [1/2], Iter [2844/3125], train_loss:0.112233
Epoch [1/2], Iter [2845/3125], train_loss:0.094116
Epoch [1/2], Iter [2846/3125], train_loss:0.126081
Epoch [1/2], Iter [2847/3125], train_loss:0.090484
Epoch [1/2], Iter [2848/3125], train_loss:0.135703
Epoch [1/2], Iter [2849/3125], train_loss:0.096301
Epoch [1/2], Iter [2850/3125], train_loss:0.108214
Epoch [1/2], Iter [2851/3125], train_loss:0.073158
Epoch [1/2], Iter [2852/3125], train_loss:0.139311
Epoch [1/2], Iter [2853/3125], train_loss:0.087241
Epoch [1/2], Iter [2854/3125], train_loss:0.107322
Epoch [1/2], Iter [2855/3125], train_loss:0.114805
Epoch [1/2], Iter [2856/3125], train_loss:0.070172
Epoch [1/2], Iter [2857/3125], train_loss:0.111630
Epoch [1/2], Iter [2858/3125], train_loss:0.113782
Epoch [1/2], Iter [2859/3125], train_loss:0.120545
Epoch [1/2], Iter [2860/3125], train_loss:0.119155
Epoch [1/2], Iter [2861/3125], train_loss:0.097770
Epoch [1/2], Iter [2862/3125], train_loss:0.100840
Epoch [1/2], Iter [2863/3125], train_loss:0.114033
Epoch [1/2], Iter [2864/3125], train_loss:0.114624
Epoch [1/2], Iter [2865/3125], train_loss:0.107871
Epoch [1/2], Iter [2866/3125], train_loss:0.100698
Epoch [1/2], Iter [2867/3125], train_loss:0.091538
Epoch [1/2], Iter [2868/3125], train_loss:0.108914
Epoch [1/2], Iter [2869/3125], train_loss:0.115105
Epoch [1/2], Iter [2870/3125], train_loss:0.108430
Epoch [1/2], Iter [2871/3125], train_loss:0.094847
Epoch [1/2], Iter [2872/3125], train_loss:0.103506
Epoch [1/2], Iter [2873/3125], train_loss:0.129978
Epoch [1/2], Iter [2874/3125], train_loss:0.120356
Epoch [1/2], Iter [2875/3125], train_loss:0.091264
Epoch [1/2], Iter [2876/3125], train_loss:0.105926
Epoch [1/2], Iter [2877/3125], train_loss:0.085569
Epoch [1/2], Iter [2878/3125], train_loss:0.098659
Epoch [1/2], Iter [2879/3125], train_loss:0.116561
Epoch [1/2], Iter [2880/3125], train_loss:0.076713
Epoch [1/2], Iter [2881/3125], train_loss:0.115081
Epoch [1/2], Iter [2882/3125], train_loss:0.118629
Epoch [1/2], Iter [2883/3125], train_loss:0.083068
Epoch [1/2], Iter [2884/3125], train_loss:0.098757
Epoch [1/2], Iter [2885/3125], train_loss:0.090734
Epoch [1/2], Iter [2886/3125], train_loss:0.105137
Epoch [1/2], Iter [2887/3125], train_loss:0.100578
Epoch [1/2], Iter [2888/3125], train_loss:0.102933
Epoch [1/2], Iter [2889/3125], train_loss:0.111093
Epoch [1/2], Iter [2890/3125], train_loss:0.107033
Epoch [1/2], Iter [2891/3125], train_loss:0.094879
Epoch [1/2], Iter [2892/3125], train_loss:0.085116
Epoch [1/2], Iter [2893/3125], train_loss:0.098241
Epoch [1/2], Iter [2894/3125], train_loss:0.108890
Epoch [1/2], Iter [2895/3125], train_loss:0.102243
Epoch [1/2], Iter [2896/3125], train_loss:0.093309
Epoch [1/2], Iter [2897/3125], train_loss:0.084491
Epoch [1/2], Iter [2898/3125], train_loss:0.092920
Epoch [1/2], Iter [2899/3125], train_loss:0.100787
Epoch [1/2], Iter [2900/3125], train_loss:0.101562
Epoch [1/2], Iter [2901/3125], train_loss:0.142026
Epoch [1/2], Iter [2902/3125], train_loss:0.104432
Epoch [1/2], Iter [2903/3125], train_loss:0.127287
Epoch [1/2], Iter [2904/3125], train_loss:0.120489
Epoch [1/2], Iter [2905/3125], train_loss:0.136113
Epoch [1/2], Iter [2906/3125], train_loss:0.113443
Epoch [1/2], Iter [2907/3125], train_loss:0.118766
Epoch [1/2], Iter [2908/3125], train_loss:0.104068
Epoch [1/2], Iter [2909/3125], train_loss:0.107036
Epoch [1/2], Iter [2910/3125], train_loss:0.134377
Epoch [1/2], Iter [2911/3125], train_loss:0.103202
Epoch [1/2], Iter [2912/3125], train_loss:0.122124
Epoch [1/2], Iter [2913/3125], train_loss:0.085734
Epoch [1/2], Iter [2914/3125], train_loss:0.078548
Epoch [1/2], Iter [2915/3125], train_loss:0.080658
Epoch [1/2], Iter [2916/3125], train_loss:0.091166
Epoch [1/2], Iter [2917/3125], train_loss:0.113348
Epoch [1/2], Iter [2918/3125], train_loss:0.092998
Epoch [1/2], Iter [2919/3125], train_loss:0.098290
Epoch [1/2], Iter [2920/3125], train_loss:0.134570
Epoch [1/2], Iter [2921/3125], train_loss:0.088210
Epoch [1/2], Iter [2922/3125], train_loss:0.088639
Epoch [1/2], Iter [2923/3125], train_loss:0.101916
Epoch [1/2], Iter [2924/3125], train_loss:0.121580
Epoch [1/2], Iter [2925/3125], train_loss:0.092680
Epoch [1/2], Iter [2926/3125], train_loss:0.092212
Epoch [1/2], Iter [2927/3125], train_loss:0.110600
Epoch [1/2], Iter [2928/3125], train_loss:0.076853
Epoch [1/2], Iter [2929/3125], train_loss:0.085440
Epoch [1/2], Iter [2930/3125], train_loss:0.103700
Epoch [1/2], Iter [2931/3125], train_loss:0.112204
Epoch [1/2], Iter [2932/3125], train_loss:0.100517
Epoch [1/2], Iter [2933/3125], train_loss:0.090385
Epoch [1/2], Iter [2934/3125], train_loss:0.100238
Epoch [1/2], Iter [2935/3125], train_loss:0.095390
Epoch [1/2], Iter [2936/3125], train_loss:0.102841
Epoch [1/2], Iter [2937/3125], train_loss:0.153473
Epoch [1/2], Iter [2938/3125], train_loss:0.150890
Epoch [1/2], Iter [2939/3125], train_loss:0.106806
Epoch [1/2], Iter [2940/3125], train_loss:0.116421
Epoch [1/2], Iter [2941/3125], train_loss:0.084526
Epoch [1/2], Iter [2942/3125], train_loss:0.084673
Epoch [1/2], Iter [2943/3125], train_loss:0.087922
Epoch [1/2], Iter [2944/3125], train_loss:0.093839
Epoch [1/2], Iter [2945/3125], train_loss:0.077009
Epoch [1/2], Iter [2946/3125], train_loss:0.118196
Epoch [1/2], Iter [2947/3125], train_loss:0.082792
Epoch [1/2], Iter [2948/3125], train_loss:0.092917
Epoch [1/2], Iter [2949/3125], train_loss:0.090361
Epoch [1/2], Iter [2950/3125], train_loss:0.087079
Epoch [1/2], Iter [2951/3125], train_loss:0.093458
Epoch [1/2], Iter [2952/3125], train_loss:0.072833
Epoch [1/2], Iter [2953/3125], train_loss:0.090879
Epoch [1/2], Iter [2954/3125], train_loss:0.097900
Epoch [1/2], Iter [2955/3125], train_loss:0.136696
Epoch [1/2], Iter [2956/3125], train_loss:0.064742
Epoch [1/2], Iter [2957/3125], train_loss:0.109027
Epoch [1/2], Iter [2958/3125], train_loss:0.100904
Epoch [1/2], Iter [2959/3125], train_loss:0.075821
Epoch [1/2], Iter [2960/3125], train_loss:0.096203
Epoch [1/2], Iter [2961/3125], train_loss:0.121050
Epoch [1/2], Iter [2962/3125], train_loss:0.091576
Epoch [1/2], Iter [2963/3125], train_loss:0.121059
Epoch [1/2], Iter [2964/3125], train_loss:0.081418
Epoch [1/2], Iter [2965/3125], train_loss:0.070045
Epoch [1/2], Iter [2966/3125], train_loss:0.115191
Epoch [1/2], Iter [2967/3125], train_loss:0.102221
Epoch [1/2], Iter [2968/3125], train_loss:0.089548
Epoch [1/2], Iter [2969/3125], train_loss:0.089752
Epoch [1/2], Iter [2970/3125], train_loss:0.086713
Epoch [1/2], Iter [2971/3125], train_loss:0.094410
Epoch [1/2], Iter [2972/3125], train_loss:0.109021
Epoch [1/2], Iter [2973/3125], train_loss:0.109131
Epoch [1/2], Iter [2974/3125], train_loss:0.078996
Epoch [1/2], Iter [2975/3125], train_loss:0.092639
Epoch [1/2], Iter [2976/3125], train_loss:0.083834
Epoch [1/2], Iter [2977/3125], train_loss:0.087725
Epoch [1/2], Iter [2978/3125], train_loss:0.108193
Epoch [1/2], Iter [2979/3125], train_loss:0.125889
Epoch [1/2], Iter [2980/3125], train_loss:0.098979
Epoch [1/2], Iter [2981/3125], train_loss:0.072635
Epoch [1/2], Iter [2982/3125], train_loss:0.105319
Epoch [1/2], Iter [2983/3125], train_loss:0.079485
Epoch [1/2], Iter [2984/3125], train_loss:0.083783
Epoch [1/2], Iter [2985/3125], train_loss:0.082029
Epoch [1/2], Iter [2986/3125], train_loss:0.106792
Epoch [1/2], Iter [2987/3125], train_loss:0.092535
Epoch [1/2], Iter [2988/3125], train_loss:0.101078
Epoch [1/2], Iter [2989/3125], train_loss:0.074717
Epoch [1/2], Iter [2990/3125], train_loss:0.110788
Epoch [1/2], Iter [2991/3125], train_loss:0.110753
Epoch [1/2], Iter [2992/3125], train_loss:0.077376
Epoch [1/2], Iter [2993/3125], train_loss:0.105112
Epoch [1/2], Iter [2994/3125], train_loss:0.098503
Epoch [1/2], Iter [2995/3125], train_loss:0.098274
Epoch [1/2], Iter [2996/3125], train_loss:0.111971
Epoch [1/2], Iter [2997/3125], train_loss:0.080266
Epoch [1/2], Iter [2998/3125], train_loss:0.087455
Epoch [1/2], Iter [2999/3125], train_loss:0.069537
Epoch [1/2], Iter [3000/3125], train_loss:0.114505
Epoch [1/2], Iter [3001/3125], train_loss:0.103018
Epoch [1/2], Iter [3002/3125], train_loss:0.134254
Epoch [1/2], Iter [3003/3125], train_loss:0.137939
Epoch [1/2], Iter [3004/3125], train_loss:0.096483
Epoch [1/2], Iter [3005/3125], train_loss:0.090615
Epoch [1/2], Iter [3006/3125], train_loss:0.116887
Epoch [1/2], Iter [3007/3125], train_loss:0.126273
Epoch [1/2], Iter [3008/3125], train_loss:0.100232
Epoch [1/2], Iter [3009/3125], train_loss:0.085712
Epoch [1/2], Iter [3010/3125], train_loss:0.110663
Epoch [1/2], Iter [3011/3125], train_loss:0.123572
Epoch [1/2], Iter [3012/3125], train_loss:0.112289
Epoch [1/2], Iter [3013/3125], train_loss:0.129155
Epoch [1/2], Iter [3014/3125], train_loss:0.095497
Epoch [1/2], Iter [3015/3125], train_loss:0.091534
Epoch [1/2], Iter [3016/3125], train_loss:0.087610
Epoch [1/2], Iter [3017/3125], train_loss:0.129653
Epoch [1/2], Iter [3018/3125], train_loss:0.099838
Epoch [1/2], Iter [3019/3125], train_loss:0.085400
Epoch [1/2], Iter [3020/3125], train_loss:0.100788
Epoch [1/2], Iter [3021/3125], train_loss:0.091098
Epoch [1/2], Iter [3022/3125], train_loss:0.095280
Epoch [1/2], Iter [3023/3125], train_loss:0.109820
Epoch [1/2], Iter [3024/3125], train_loss:0.092585
Epoch [1/2], Iter [3025/3125], train_loss:0.098658
Epoch [1/2], Iter [3026/3125], train_loss:0.119363
Epoch [1/2], Iter [3027/3125], train_loss:0.077531
Epoch [1/2], Iter [3028/3125], train_loss:0.118906
Epoch [1/2], Iter [3029/3125], train_loss:0.123934
Epoch [1/2], Iter [3030/3125], train_loss:0.070096
Epoch [1/2], Iter [3031/3125], train_loss:0.082617
Epoch [1/2], Iter [3032/3125], train_loss:0.124859
Epoch [1/2], Iter [3033/3125], train_loss:0.099028
Epoch [1/2], Iter [3034/3125], train_loss:0.087440
Epoch [1/2], Iter [3035/3125], train_loss:0.089839
Epoch [1/2], Iter [3036/3125], train_loss:0.088460
Epoch [1/2], Iter [3037/3125], train_loss:0.070800
Epoch [1/2], Iter [3038/3125], train_loss:0.112089
Epoch [1/2], Iter [3039/3125], train_loss:0.126554
Epoch [1/2], Iter [3040/3125], train_loss:0.131252
Epoch [1/2], Iter [3041/3125], train_loss:0.112579
Epoch [1/2], Iter [3042/3125], train_loss:0.115775
Epoch [1/2], Iter [3043/3125], train_loss:0.072862
Epoch [1/2], Iter [3044/3125], train_loss:0.096823
Epoch [1/2], Iter [3045/3125], train_loss:0.118967
Epoch [1/2], Iter [3046/3125], train_loss:0.094897
Epoch [1/2], Iter [3047/3125], train_loss:0.122852
Epoch [1/2], Iter [3048/3125], train_loss:0.138975
Epoch [1/2], Iter [3049/3125], train_loss:0.085603
Epoch [1/2], Iter [3050/3125], train_loss:0.103826
Epoch [1/2], Iter [3051/3125], train_loss:0.117173
Epoch [1/2], Iter [3052/3125], train_loss:0.108605
Epoch [1/2], Iter [3053/3125], train_loss:0.083909
Epoch [1/2], Iter [3054/3125], train_loss:0.111517
Epoch [1/2], Iter [3055/3125], train_loss:0.108840
Epoch [1/2], Iter [3056/3125], train_loss:0.084882
Epoch [1/2], Iter [3057/3125], train_loss:0.112076
Epoch [1/2], Iter [3058/3125], train_loss:0.099775
Epoch [1/2], Iter [3059/3125], train_loss:0.091122
Epoch [1/2], Iter [3060/3125], train_loss:0.079662
Epoch [1/2], Iter [3061/3125], train_loss:0.112417
Epoch [1/2], Iter [3062/3125], train_loss:0.112178
Epoch [1/2], Iter [3063/3125], train_loss:0.088234
Epoch [1/2], Iter [3064/3125], train_loss:0.107721
Epoch [1/2], Iter [3065/3125], train_loss:0.104738
Epoch [1/2], Iter [3066/3125], train_loss:0.107277
Epoch [1/2], Iter [3067/3125], train_loss:0.103006
Epoch [1/2], Iter [3068/3125], train_loss:0.135107
Epoch [1/2], Iter [3069/3125], train_loss:0.091834
Epoch [1/2], Iter [3070/3125], train_loss:0.110295
Epoch [1/2], Iter [3071/3125], train_loss:0.088163
Epoch [1/2], Iter [3072/3125], train_loss:0.128199
Epoch [1/2], Iter [3073/3125], train_loss:0.113416
Epoch [1/2], Iter [3074/3125], train_loss:0.083675
Epoch [1/2], Iter [3075/3125], train_loss:0.129645
Epoch [1/2], Iter [3076/3125], train_loss:0.084569
Epoch [1/2], Iter [3077/3125], train_loss:0.121163
Epoch [1/2], Iter [3078/3125], train_loss:0.092450
Epoch [1/2], Iter [3079/3125], train_loss:0.109824
Epoch [1/2], Iter [3080/3125], train_loss:0.085952
Epoch [1/2], Iter [3081/3125], train_loss:0.111499
Epoch [1/2], Iter [3082/3125], train_loss:0.091926
Epoch [1/2], Iter [3083/3125], train_loss:0.126225
Epoch [1/2], Iter [3084/3125], train_loss:0.085915
Epoch [1/2], Iter [3085/3125], train_loss:0.086037
Epoch [1/2], Iter [3086/3125], train_loss:0.072105
Epoch [1/2], Iter [3087/3125], train_loss:0.124601
Epoch [1/2], Iter [3088/3125], train_loss:0.131993
Epoch [1/2], Iter [3089/3125], train_loss:0.113655
Epoch [1/2], Iter [3090/3125], train_loss:0.110477
Epoch [1/2], Iter [3091/3125], train_loss:0.083211
Epoch [1/2], Iter [3092/3125], train_loss:0.093807
Epoch [1/2], Iter [3093/3125], train_loss:0.104893
Epoch [1/2], Iter [3094/3125], train_loss:0.099689
Epoch [1/2], Iter [3095/3125], train_loss:0.104535
Epoch [1/2], Iter [3096/3125], train_loss:0.098604
Epoch [1/2], Iter [3097/3125], train_loss:0.099393
Epoch [1/2], Iter [3098/3125], train_loss:0.122256
Epoch [1/2], Iter [3099/3125], train_loss:0.119814
Epoch [1/2], Iter [3100/3125], train_loss:0.112334
Epoch [1/2], Iter [3101/3125], train_loss:0.123617
Epoch [1/2], Iter [3102/3125], train_loss:0.077105
Epoch [1/2], Iter [3103/3125], train_loss:0.085895
Epoch [1/2], Iter [3104/3125], train_loss:0.114813
Epoch [1/2], Iter [3105/3125], train_loss:0.062794
Epoch [1/2], Iter [3106/3125], train_loss:0.116139
Epoch [1/2], Iter [3107/3125], train_loss:0.091801
Epoch [1/2], Iter [3108/3125], train_loss:0.097065
Epoch [1/2], Iter [3109/3125], train_loss:0.102375
Epoch [1/2], Iter [3110/3125], train_loss:0.107358
Epoch [1/2], Iter [3111/3125], train_loss:0.087032
Epoch [1/2], Iter [3112/3125], train_loss:0.088426
Epoch [1/2], Iter [3113/3125], train_loss:0.096127
Epoch [1/2], Iter [3114/3125], train_loss:0.112896
Epoch [1/2], Iter [3115/3125], train_loss:0.101730
Epoch [1/2], Iter [3116/3125], train_loss:0.103965
Epoch [1/2], Iter [3117/3125], train_loss:0.091098
Epoch [1/2], Iter [3118/3125], train_loss:0.088157
Epoch [1/2], Iter [3119/3125], train_loss:0.131079
Epoch [1/2], Iter [3120/3125], train_loss:0.105961
Epoch [1/2], Iter [3121/3125], train_loss:0.102978
Epoch [1/2], Iter [3122/3125], train_loss:0.097545
Epoch [1/2], Iter [3123/3125], train_loss:0.104406
Epoch [1/2], Iter [3124/3125], train_loss:0.080545
Epoch [1/2], Iter [3125/3125], train_loss:0.093825
Epoch [1/2], train_loss:0.1192, train_acc:32.1560%, test_loss:0.0972, test_acc:43.6000%
Epoch [2/2], Iter [1/3125], train_loss:0.091757
Epoch [2/2], Iter [2/3125], train_loss:0.089473
Epoch [2/2], Iter [3/3125], train_loss:0.098204
Epoch [2/2], Iter [4/3125], train_loss:0.086418
Epoch [2/2], Iter [5/3125], train_loss:0.089171
Epoch [2/2], Iter [6/3125], train_loss:0.086089
Epoch [2/2], Iter [7/3125], train_loss:0.091749
Epoch [2/2], Iter [8/3125], train_loss:0.115198
Epoch [2/2], Iter [9/3125], train_loss:0.114494
Epoch [2/2], Iter [10/3125], train_loss:0.099484
Epoch [2/2], Iter [11/3125], train_loss:0.111296
Epoch [2/2], Iter [12/3125], train_loss:0.100909
Epoch [2/2], Iter [13/3125], train_loss:0.102753
Epoch [2/2], Iter [14/3125], train_loss:0.074273
Epoch [2/2], Iter [15/3125], train_loss:0.079903
Epoch [2/2], Iter [16/3125], train_loss:0.089634
Epoch [2/2], Iter [17/3125], train_loss:0.092798
Epoch [2/2], Iter [18/3125], train_loss:0.107158
Epoch [2/2], Iter [19/3125], train_loss:0.093421
Epoch [2/2], Iter [20/3125], train_loss:0.110199
Epoch [2/2], Iter [21/3125], train_loss:0.104135
Epoch [2/2], Iter [22/3125], train_loss:0.093904
Epoch [2/2], Iter [23/3125], train_loss:0.094700
Epoch [2/2], Iter [24/3125], train_loss:0.101966
Epoch [2/2], Iter [25/3125], train_loss:0.075299
Epoch [2/2], Iter [26/3125], train_loss:0.081989
Epoch [2/2], Iter [27/3125], train_loss:0.096282
Epoch [2/2], Iter [28/3125], train_loss:0.099643
Epoch [2/2], Iter [29/3125], train_loss:0.094669
Epoch [2/2], Iter [30/3125], train_loss:0.102238
Epoch [2/2], Iter [31/3125], train_loss:0.075263
Epoch [2/2], Iter [32/3125], train_loss:0.096392
Epoch [2/2], Iter [33/3125], train_loss:0.160338
Epoch [2/2], Iter [34/3125], train_loss:0.110569
Epoch [2/2], Iter [35/3125], train_loss:0.084512
Epoch [2/2], Iter [36/3125], train_loss:0.106845
Epoch [2/2], Iter [37/3125], train_loss:0.092132
Epoch [2/2], Iter [38/3125], train_loss:0.086252
Epoch [2/2], Iter [39/3125], train_loss:0.073865
Epoch [2/2], Iter [40/3125], train_loss:0.100261
Epoch [2/2], Iter [41/3125], train_loss:0.077646
Epoch [2/2], Iter [42/3125], train_loss:0.076397
Epoch [2/2], Iter [43/3125], train_loss:0.125353
Epoch [2/2], Iter [44/3125], train_loss:0.100842
Epoch [2/2], Iter [45/3125], train_loss:0.120180
Epoch [2/2], Iter [46/3125], train_loss:0.087662
Epoch [2/2], Iter [47/3125], train_loss:0.091548
Epoch [2/2], Iter [48/3125], train_loss:0.088386
Epoch [2/2], Iter [49/3125], train_loss:0.094382
Epoch [2/2], Iter [50/3125], train_loss:0.098175
Epoch [2/2], Iter [51/3125], train_loss:0.087562
Epoch [2/2], Iter [52/3125], train_loss:0.108904
Epoch [2/2], Iter [53/3125], train_loss:0.080077
Epoch [2/2], Iter [54/3125], train_loss:0.108177
Epoch [2/2], Iter [55/3125], train_loss:0.131528
Epoch [2/2], Iter [56/3125], train_loss:0.080193
Epoch [2/2], Iter [57/3125], train_loss:0.091726
Epoch [2/2], Iter [58/3125], train_loss:0.071657
Epoch [2/2], Iter [59/3125], train_loss:0.084843
Epoch [2/2], Iter [60/3125], train_loss:0.104012
Epoch [2/2], Iter [61/3125], train_loss:0.102972
Epoch [2/2], Iter [62/3125], train_loss:0.111907
Epoch [2/2], Iter [63/3125], train_loss:0.111772
Epoch [2/2], Iter [64/3125], train_loss:0.078473
Epoch [2/2], Iter [65/3125], train_loss:0.080929
Epoch [2/2], Iter [66/3125], train_loss:0.091896
Epoch [2/2], Iter [67/3125], train_loss:0.070422
Epoch [2/2], Iter [68/3125], train_loss:0.106302
Epoch [2/2], Iter [69/3125], train_loss:0.106870
Epoch [2/2], Iter [70/3125], train_loss:0.090615
Epoch [2/2], Iter [71/3125], train_loss:0.098871
Epoch [2/2], Iter [72/3125], train_loss:0.096799
Epoch [2/2], Iter [73/3125], train_loss:0.088088
Epoch [2/2], Iter [74/3125], train_loss:0.079056
Epoch [2/2], Iter [75/3125], train_loss:0.092176
Epoch [2/2], Iter [76/3125], train_loss:0.093906
Epoch [2/2], Iter [77/3125], train_loss:0.107949
Epoch [2/2], Iter [78/3125], train_loss:0.094350
Epoch [2/2], Iter [79/3125], train_loss:0.088256
Epoch [2/2], Iter [80/3125], train_loss:0.113880
Epoch [2/2], Iter [81/3125], train_loss:0.098161
Epoch [2/2], Iter [82/3125], train_loss:0.110207
Epoch [2/2], Iter [83/3125], train_loss:0.064564
Epoch [2/2], Iter [84/3125], train_loss:0.106611
Epoch [2/2], Iter [85/3125], train_loss:0.105607
Epoch [2/2], Iter [86/3125], train_loss:0.102875
Epoch [2/2], Iter [87/3125], train_loss:0.107462
Epoch [2/2], Iter [88/3125], train_loss:0.105881
Epoch [2/2], Iter [89/3125], train_loss:0.121599
Epoch [2/2], Iter [90/3125], train_loss:0.103243
Epoch [2/2], Iter [91/3125], train_loss:0.080412
Epoch [2/2], Iter [92/3125], train_loss:0.098595
Epoch [2/2], Iter [93/3125], train_loss:0.083234
Epoch [2/2], Iter [94/3125], train_loss:0.075366
Epoch [2/2], Iter [95/3125], train_loss:0.115272
Epoch [2/2], Iter [96/3125], train_loss:0.114001
Epoch [2/2], Iter [97/3125], train_loss:0.086412
Epoch [2/2], Iter [98/3125], train_loss:0.071845
Epoch [2/2], Iter [99/3125], train_loss:0.110689
Epoch [2/2], Iter [100/3125], train_loss:0.081002
Epoch [2/2], Iter [101/3125], train_loss:0.087105
Epoch [2/2], Iter [102/3125], train_loss:0.077709
Epoch [2/2], Iter [103/3125], train_loss:0.087919
Epoch [2/2], Iter [104/3125], train_loss:0.092537
Epoch [2/2], Iter [105/3125], train_loss:0.097107
Epoch [2/2], Iter [106/3125], train_loss:0.066073
Epoch [2/2], Iter [107/3125], train_loss:0.111412
Epoch [2/2], Iter [108/3125], train_loss:0.075312
Epoch [2/2], Iter [109/3125], train_loss:0.102170
Epoch [2/2], Iter [110/3125], train_loss:0.098995
Epoch [2/2], Iter [111/3125], train_loss:0.075082
Epoch [2/2], Iter [112/3125], train_loss:0.086781
Epoch [2/2], Iter [113/3125], train_loss:0.106837
Epoch [2/2], Iter [114/3125], train_loss:0.087139
Epoch [2/2], Iter [115/3125], train_loss:0.099929
Epoch [2/2], Iter [116/3125], train_loss:0.096372
Epoch [2/2], Iter [117/3125], train_loss:0.101554
Epoch [2/2], Iter [118/3125], train_loss:0.087905
Epoch [2/2], Iter [119/3125], train_loss:0.070996
Epoch [2/2], Iter [120/3125], train_loss:0.105514
Epoch [2/2], Iter [121/3125], train_loss:0.136283
Epoch [2/2], Iter [122/3125], train_loss:0.103037
Epoch [2/2], Iter [123/3125], train_loss:0.097136
Epoch [2/2], Iter [124/3125], train_loss:0.101025
Epoch [2/2], Iter [125/3125], train_loss:0.094171
Epoch [2/2], Iter [126/3125], train_loss:0.121665
Epoch [2/2], Iter [127/3125], train_loss:0.092011
Epoch [2/2], Iter [128/3125], train_loss:0.078880
Epoch [2/2], Iter [129/3125], train_loss:0.128020
Epoch [2/2], Iter [130/3125], train_loss:0.072524
Epoch [2/2], Iter [131/3125], train_loss:0.071616
Epoch [2/2], Iter [132/3125], train_loss:0.096712
Epoch [2/2], Iter [133/3125], train_loss:0.093573
Epoch [2/2], Iter [134/3125], train_loss:0.121898
Epoch [2/2], Iter [135/3125], train_loss:0.093081
Epoch [2/2], Iter [136/3125], train_loss:0.105385
Epoch [2/2], Iter [137/3125], train_loss:0.103334
Epoch [2/2], Iter [138/3125], train_loss:0.083012
Epoch [2/2], Iter [139/3125], train_loss:0.123903
Epoch [2/2], Iter [140/3125], train_loss:0.066876
Epoch [2/2], Iter [141/3125], train_loss:0.117363
Epoch [2/2], Iter [142/3125], train_loss:0.065998
Epoch [2/2], Iter [143/3125], train_loss:0.125768
Epoch [2/2], Iter [144/3125], train_loss:0.098320
Epoch [2/2], Iter [145/3125], train_loss:0.126339
Epoch [2/2], Iter [146/3125], train_loss:0.106683
Epoch [2/2], Iter [147/3125], train_loss:0.108368
Epoch [2/2], Iter [148/3125], train_loss:0.068419
Epoch [2/2], Iter [149/3125], train_loss:0.116456
Epoch [2/2], Iter [150/3125], train_loss:0.089318
Epoch [2/2], Iter [151/3125], train_loss:0.088393
Epoch [2/2], Iter [152/3125], train_loss:0.078417
Epoch [2/2], Iter [153/3125], train_loss:0.090817
Epoch [2/2], Iter [154/3125], train_loss:0.141944
Epoch [2/2], Iter [155/3125], train_loss:0.112521
Epoch [2/2], Iter [156/3125], train_loss:0.105626
Epoch [2/2], Iter [157/3125], train_loss:0.101277
Epoch [2/2], Iter [158/3125], train_loss:0.108937
Epoch [2/2], Iter [159/3125], train_loss:0.114222
Epoch [2/2], Iter [160/3125], train_loss:0.109539
Epoch [2/2], Iter [161/3125], train_loss:0.095470
Epoch [2/2], Iter [162/3125], train_loss:0.083049
Epoch [2/2], Iter [163/3125], train_loss:0.130008
Epoch [2/2], Iter [164/3125], train_loss:0.108459
Epoch [2/2], Iter [165/3125], train_loss:0.103473
Epoch [2/2], Iter [166/3125], train_loss:0.102036
Epoch [2/2], Iter [167/3125], train_loss:0.071162
Epoch [2/2], Iter [168/3125], train_loss:0.107491
Epoch [2/2], Iter [169/3125], train_loss:0.098133
Epoch [2/2], Iter [170/3125], train_loss:0.096314
Epoch [2/2], Iter [171/3125], train_loss:0.073051
Epoch [2/2], Iter [172/3125], train_loss:0.155295
Epoch [2/2], Iter [173/3125], train_loss:0.134648
Epoch [2/2], Iter [174/3125], train_loss:0.096655
Epoch [2/2], Iter [175/3125], train_loss:0.123550
Epoch [2/2], Iter [176/3125], train_loss:0.089275
Epoch [2/2], Iter [177/3125], train_loss:0.100006
Epoch [2/2], Iter [178/3125], train_loss:0.111296
Epoch [2/2], Iter [179/3125], train_loss:0.097870
Epoch [2/2], Iter [180/3125], train_loss:0.091881
Epoch [2/2], Iter [181/3125], train_loss:0.099951
Epoch [2/2], Iter [182/3125], train_loss:0.069839
Epoch [2/2], Iter [183/3125], train_loss:0.137639
Epoch [2/2], Iter [184/3125], train_loss:0.108209
Epoch [2/2], Iter [185/3125], train_loss:0.070030
Epoch [2/2], Iter [186/3125], train_loss:0.086371
Epoch [2/2], Iter [187/3125], train_loss:0.107254
Epoch [2/2], Iter [188/3125], train_loss:0.130238
Epoch [2/2], Iter [189/3125], train_loss:0.073020
Epoch [2/2], Iter [190/3125], train_loss:0.115974
Epoch [2/2], Iter [191/3125], train_loss:0.089619
Epoch [2/2], Iter [192/3125], train_loss:0.070109
Epoch [2/2], Iter [193/3125], train_loss:0.104231
Epoch [2/2], Iter [194/3125], train_loss:0.108008
Epoch [2/2], Iter [195/3125], train_loss:0.094901
Epoch [2/2], Iter [196/3125], train_loss:0.075482
Epoch [2/2], Iter [197/3125], train_loss:0.103212
Epoch [2/2], Iter [198/3125], train_loss:0.122867
Epoch [2/2], Iter [199/3125], train_loss:0.103050
Epoch [2/2], Iter [200/3125], train_loss:0.105274
Epoch [2/2], Iter [201/3125], train_loss:0.091650
Epoch [2/2], Iter [202/3125], train_loss:0.096133
Epoch [2/2], Iter [203/3125], train_loss:0.087355
Epoch [2/2], Iter [204/3125], train_loss:0.158490
Epoch [2/2], Iter [205/3125], train_loss:0.108093
Epoch [2/2], Iter [206/3125], train_loss:0.096270
Epoch [2/2], Iter [207/3125], train_loss:0.084289
Epoch [2/2], Iter [208/3125], train_loss:0.132000
Epoch [2/2], Iter [209/3125], train_loss:0.121158
Epoch [2/2], Iter [210/3125], train_loss:0.094302
Epoch [2/2], Iter [211/3125], train_loss:0.124608
Epoch [2/2], Iter [212/3125], train_loss:0.089951
Epoch [2/2], Iter [213/3125], train_loss:0.088527
Epoch [2/2], Iter [214/3125], train_loss:0.083720
Epoch [2/2], Iter [215/3125], train_loss:0.101040
Epoch [2/2], Iter [216/3125], train_loss:0.083461
Epoch [2/2], Iter [217/3125], train_loss:0.081839
Epoch [2/2], Iter [218/3125], train_loss:0.076899
Epoch [2/2], Iter [219/3125], train_loss:0.094987
Epoch [2/2], Iter [220/3125], train_loss:0.071407
Epoch [2/2], Iter [221/3125], train_loss:0.062804
Epoch [2/2], Iter [222/3125], train_loss:0.086016
Epoch [2/2], Iter [223/3125], train_loss:0.148447
Epoch [2/2], Iter [224/3125], train_loss:0.092807
Epoch [2/2], Iter [225/3125], train_loss:0.098514
Epoch [2/2], Iter [226/3125], train_loss:0.079975
Epoch [2/2], Iter [227/3125], train_loss:0.103644
Epoch [2/2], Iter [228/3125], train_loss:0.097163
Epoch [2/2], Iter [229/3125], train_loss:0.116863
Epoch [2/2], Iter [230/3125], train_loss:0.115765
Epoch [2/2], Iter [231/3125], train_loss:0.083744
Epoch [2/2], Iter [232/3125], train_loss:0.092721
Epoch [2/2], Iter [233/3125], train_loss:0.083652
Epoch [2/2], Iter [234/3125], train_loss:0.107158
Epoch [2/2], Iter [235/3125], train_loss:0.097513
Epoch [2/2], Iter [236/3125], train_loss:0.098046
Epoch [2/2], Iter [237/3125], train_loss:0.102731
Epoch [2/2], Iter [238/3125], train_loss:0.108409
Epoch [2/2], Iter [239/3125], train_loss:0.084167
Epoch [2/2], Iter [240/3125], train_loss:0.115512
Epoch [2/2], Iter [241/3125], train_loss:0.090877
Epoch [2/2], Iter [242/3125], train_loss:0.111257
Epoch [2/2], Iter [243/3125], train_loss:0.099199
Epoch [2/2], Iter [244/3125], train_loss:0.127728
Epoch [2/2], Iter [245/3125], train_loss:0.092669
Epoch [2/2], Iter [246/3125], train_loss:0.091938
Epoch [2/2], Iter [247/3125], train_loss:0.117714
Epoch [2/2], Iter [248/3125], train_loss:0.103751
Epoch [2/2], Iter [249/3125], train_loss:0.086651
Epoch [2/2], Iter [250/3125], train_loss:0.107576
Epoch [2/2], Iter [251/3125], train_loss:0.106203
Epoch [2/2], Iter [252/3125], train_loss:0.087378
Epoch [2/2], Iter [253/3125], train_loss:0.115751
Epoch [2/2], Iter [254/3125], train_loss:0.132171
Epoch [2/2], Iter [255/3125], train_loss:0.078951
Epoch [2/2], Iter [256/3125], train_loss:0.080014
Epoch [2/2], Iter [257/3125], train_loss:0.134510
Epoch [2/2], Iter [258/3125], train_loss:0.137065
Epoch [2/2], Iter [259/3125], train_loss:0.104432
Epoch [2/2], Iter [260/3125], train_loss:0.106487
Epoch [2/2], Iter [261/3125], train_loss:0.069835
Epoch [2/2], Iter [262/3125], train_loss:0.094925
Epoch [2/2], Iter [263/3125], train_loss:0.094040
Epoch [2/2], Iter [264/3125], train_loss:0.093047
Epoch [2/2], Iter [265/3125], train_loss:0.079012
Epoch [2/2], Iter [266/3125], train_loss:0.098503
Epoch [2/2], Iter [267/3125], train_loss:0.105267
Epoch [2/2], Iter [268/3125], train_loss:0.087947
Epoch [2/2], Iter [269/3125], train_loss:0.078582
Epoch [2/2], Iter [270/3125], train_loss:0.090194
Epoch [2/2], Iter [271/3125], train_loss:0.077623
Epoch [2/2], Iter [272/3125], train_loss:0.072486
Epoch [2/2], Iter [273/3125], train_loss:0.106877
Epoch [2/2], Iter [274/3125], train_loss:0.093605
Epoch [2/2], Iter [275/3125], train_loss:0.095765
Epoch [2/2], Iter [276/3125], train_loss:0.073483
Epoch [2/2], Iter [277/3125], train_loss:0.105748
Epoch [2/2], Iter [278/3125], train_loss:0.115098
Epoch [2/2], Iter [279/3125], train_loss:0.101363
Epoch [2/2], Iter [280/3125], train_loss:0.094877
Epoch [2/2], Iter [281/3125], train_loss:0.077018
Epoch [2/2], Iter [282/3125], train_loss:0.142760
Epoch [2/2], Iter [283/3125], train_loss:0.083268
Epoch [2/2], Iter [284/3125], train_loss:0.091778
Epoch [2/2], Iter [285/3125], train_loss:0.100697
Epoch [2/2], Iter [286/3125], train_loss:0.061429
Epoch [2/2], Iter [287/3125], train_loss:0.103810
Epoch [2/2], Iter [288/3125], train_loss:0.074329
Epoch [2/2], Iter [289/3125], train_loss:0.086135
Epoch [2/2], Iter [290/3125], train_loss:0.052865
Epoch [2/2], Iter [291/3125], train_loss:0.064886
Epoch [2/2], Iter [292/3125], train_loss:0.083900
Epoch [2/2], Iter [293/3125], train_loss:0.109142
Epoch [2/2], Iter [294/3125], train_loss:0.092724
Epoch [2/2], Iter [295/3125], train_loss:0.120955
Epoch [2/2], Iter [296/3125], train_loss:0.083090
Epoch [2/2], Iter [297/3125], train_loss:0.086837
Epoch [2/2], Iter [298/3125], train_loss:0.080210
Epoch [2/2], Iter [299/3125], train_loss:0.091169
Epoch [2/2], Iter [300/3125], train_loss:0.096427
Epoch [2/2], Iter [301/3125], train_loss:0.120840
Epoch [2/2], Iter [302/3125], train_loss:0.068802
Epoch [2/2], Iter [303/3125], train_loss:0.083719
Epoch [2/2], Iter [304/3125], train_loss:0.115758
Epoch [2/2], Iter [305/3125], train_loss:0.100274
Epoch [2/2], Iter [306/3125], train_loss:0.110705
Epoch [2/2], Iter [307/3125], train_loss:0.106541
Epoch [2/2], Iter [308/3125], train_loss:0.088817
Epoch [2/2], Iter [309/3125], train_loss:0.102153
Epoch [2/2], Iter [310/3125], train_loss:0.097295
Epoch [2/2], Iter [311/3125], train_loss:0.081824
Epoch [2/2], Iter [312/3125], train_loss:0.068557
Epoch [2/2], Iter [313/3125], train_loss:0.117271
Epoch [2/2], Iter [314/3125], train_loss:0.060042
Epoch [2/2], Iter [315/3125], train_loss:0.080024
Epoch [2/2], Iter [316/3125], train_loss:0.065119
Epoch [2/2], Iter [317/3125], train_loss:0.083336
Epoch [2/2], Iter [318/3125], train_loss:0.111622
Epoch [2/2], Iter [319/3125], train_loss:0.093300
Epoch [2/2], Iter [320/3125], train_loss:0.092461
Epoch [2/2], Iter [321/3125], train_loss:0.081172
Epoch [2/2], Iter [322/3125], train_loss:0.095288
Epoch [2/2], Iter [323/3125], train_loss:0.076318
Epoch [2/2], Iter [324/3125], train_loss:0.079046
Epoch [2/2], Iter [325/3125], train_loss:0.116439
Epoch [2/2], Iter [326/3125], train_loss:0.081611
Epoch [2/2], Iter [327/3125], train_loss:0.089972
Epoch [2/2], Iter [328/3125], train_loss:0.078858
Epoch [2/2], Iter [329/3125], train_loss:0.087226
Epoch [2/2], Iter [330/3125], train_loss:0.091323
Epoch [2/2], Iter [331/3125], train_loss:0.076480
Epoch [2/2], Iter [332/3125], train_loss:0.104710
Epoch [2/2], Iter [333/3125], train_loss:0.127592
Epoch [2/2], Iter [334/3125], train_loss:0.091593
Epoch [2/2], Iter [335/3125], train_loss:0.079174
Epoch [2/2], Iter [336/3125], train_loss:0.103978
Epoch [2/2], Iter [337/3125], train_loss:0.096624
Epoch [2/2], Iter [338/3125], train_loss:0.103828
Epoch [2/2], Iter [339/3125], train_loss:0.120061
Epoch [2/2], Iter [340/3125], train_loss:0.137862
Epoch [2/2], Iter [341/3125], train_loss:0.083696
Epoch [2/2], Iter [342/3125], train_loss:0.120275
Epoch [2/2], Iter [343/3125], train_loss:0.070729
Epoch [2/2], Iter [344/3125], train_loss:0.071022
Epoch [2/2], Iter [345/3125], train_loss:0.113541
Epoch [2/2], Iter [346/3125], train_loss:0.155338
Epoch [2/2], Iter [347/3125], train_loss:0.089502
Epoch [2/2], Iter [348/3125], train_loss:0.102329
Epoch [2/2], Iter [349/3125], train_loss:0.088657
Epoch [2/2], Iter [350/3125], train_loss:0.099869
Epoch [2/2], Iter [351/3125], train_loss:0.100885
Epoch [2/2], Iter [352/3125], train_loss:0.076961
Epoch [2/2], Iter [353/3125], train_loss:0.093844
Epoch [2/2], Iter [354/3125], train_loss:0.091456
Epoch [2/2], Iter [355/3125], train_loss:0.083950
Epoch [2/2], Iter [356/3125], train_loss:0.083916
Epoch [2/2], Iter [357/3125], train_loss:0.106248
Epoch [2/2], Iter [358/3125], train_loss:0.096157
Epoch [2/2], Iter [359/3125], train_loss:0.064131
Epoch [2/2], Iter [360/3125], train_loss:0.084503
Epoch [2/2], Iter [361/3125], train_loss:0.103175
Epoch [2/2], Iter [362/3125], train_loss:0.102201
Epoch [2/2], Iter [363/3125], train_loss:0.078447
Epoch [2/2], Iter [364/3125], train_loss:0.106766
Epoch [2/2], Iter [365/3125], train_loss:0.072494
Epoch [2/2], Iter [366/3125], train_loss:0.097293
Epoch [2/2], Iter [367/3125], train_loss:0.080583
Epoch [2/2], Iter [368/3125], train_loss:0.084713
Epoch [2/2], Iter [369/3125], train_loss:0.098219
Epoch [2/2], Iter [370/3125], train_loss:0.099100
Epoch [2/2], Iter [371/3125], train_loss:0.071372
Epoch [2/2], Iter [372/3125], train_loss:0.120350
Epoch [2/2], Iter [373/3125], train_loss:0.088132
Epoch [2/2], Iter [374/3125], train_loss:0.092861
Epoch [2/2], Iter [375/3125], train_loss:0.077495
Epoch [2/2], Iter [376/3125], train_loss:0.081694
Epoch [2/2], Iter [377/3125], train_loss:0.100780
Epoch [2/2], Iter [378/3125], train_loss:0.093676
Epoch [2/2], Iter [379/3125], train_loss:0.095345
Epoch [2/2], Iter [380/3125], train_loss:0.118269
Epoch [2/2], Iter [381/3125], train_loss:0.088016
Epoch [2/2], Iter [382/3125], train_loss:0.069193
Epoch [2/2], Iter [383/3125], train_loss:0.080610
Epoch [2/2], Iter [384/3125], train_loss:0.086855
Epoch [2/2], Iter [385/3125], train_loss:0.107553
Epoch [2/2], Iter [386/3125], train_loss:0.099464
Epoch [2/2], Iter [387/3125], train_loss:0.133794
Epoch [2/2], Iter [388/3125], train_loss:0.070247
Epoch [2/2], Iter [389/3125], train_loss:0.105525
Epoch [2/2], Iter [390/3125], train_loss:0.090175
Epoch [2/2], Iter [391/3125], train_loss:0.086423
Epoch [2/2], Iter [392/3125], train_loss:0.114725
Epoch [2/2], Iter [393/3125], train_loss:0.097274
Epoch [2/2], Iter [394/3125], train_loss:0.074110
Epoch [2/2], Iter [395/3125], train_loss:0.083200
Epoch [2/2], Iter [396/3125], train_loss:0.097351
Epoch [2/2], Iter [397/3125], train_loss:0.074531
Epoch [2/2], Iter [398/3125], train_loss:0.074331
Epoch [2/2], Iter [399/3125], train_loss:0.103247
Epoch [2/2], Iter [400/3125], train_loss:0.098521
Epoch [2/2], Iter [401/3125], train_loss:0.090921
Epoch [2/2], Iter [402/3125], train_loss:0.112154
Epoch [2/2], Iter [403/3125], train_loss:0.070519
Epoch [2/2], Iter [404/3125], train_loss:0.089387
Epoch [2/2], Iter [405/3125], train_loss:0.107348
Epoch [2/2], Iter [406/3125], train_loss:0.105891
Epoch [2/2], Iter [407/3125], train_loss:0.144931
Epoch [2/2], Iter [408/3125], train_loss:0.082374
Epoch [2/2], Iter [409/3125], train_loss:0.129991
Epoch [2/2], Iter [410/3125], train_loss:0.103775
Epoch [2/2], Iter [411/3125], train_loss:0.108515
Epoch [2/2], Iter [412/3125], train_loss:0.100185
Epoch [2/2], Iter [413/3125], train_loss:0.084244
Epoch [2/2], Iter [414/3125], train_loss:0.109758
Epoch [2/2], Iter [415/3125], train_loss:0.076957
Epoch [2/2], Iter [416/3125], train_loss:0.092599
Epoch [2/2], Iter [417/3125], train_loss:0.078856
Epoch [2/2], Iter [418/3125], train_loss:0.069968
Epoch [2/2], Iter [419/3125], train_loss:0.090139
Epoch [2/2], Iter [420/3125], train_loss:0.062768
Epoch [2/2], Iter [421/3125], train_loss:0.079735
Epoch [2/2], Iter [422/3125], train_loss:0.107121
Epoch [2/2], Iter [423/3125], train_loss:0.145370
Epoch [2/2], Iter [424/3125], train_loss:0.079752
Epoch [2/2], Iter [425/3125], train_loss:0.132153
Epoch [2/2], Iter [426/3125], train_loss:0.083394
Epoch [2/2], Iter [427/3125], train_loss:0.081933
Epoch [2/2], Iter [428/3125], train_loss:0.098451
Epoch [2/2], Iter [429/3125], train_loss:0.106545
Epoch [2/2], Iter [430/3125], train_loss:0.110436
Epoch [2/2], Iter [431/3125], train_loss:0.079092
Epoch [2/2], Iter [432/3125], train_loss:0.090842
Epoch [2/2], Iter [433/3125], train_loss:0.094455
Epoch [2/2], Iter [434/3125], train_loss:0.083076
Epoch [2/2], Iter [435/3125], train_loss:0.098882
Epoch [2/2], Iter [436/3125], train_loss:0.124126
Epoch [2/2], Iter [437/3125], train_loss:0.099700
Epoch [2/2], Iter [438/3125], train_loss:0.092618
Epoch [2/2], Iter [439/3125], train_loss:0.092783
Epoch [2/2], Iter [440/3125], train_loss:0.134112
Epoch [2/2], Iter [441/3125], train_loss:0.084922
Epoch [2/2], Iter [442/3125], train_loss:0.118824
Epoch [2/2], Iter [443/3125], train_loss:0.103315
Epoch [2/2], Iter [444/3125], train_loss:0.125121
Epoch [2/2], Iter [445/3125], train_loss:0.133544
Epoch [2/2], Iter [446/3125], train_loss:0.110311
Epoch [2/2], Iter [447/3125], train_loss:0.083451
Epoch [2/2], Iter [448/3125], train_loss:0.110809
Epoch [2/2], Iter [449/3125], train_loss:0.097352
Epoch [2/2], Iter [450/3125], train_loss:0.094873
Epoch [2/2], Iter [451/3125], train_loss:0.109798
Epoch [2/2], Iter [452/3125], train_loss:0.108717
Epoch [2/2], Iter [453/3125], train_loss:0.091716
Epoch [2/2], Iter [454/3125], train_loss:0.090690
Epoch [2/2], Iter [455/3125], train_loss:0.094762
Epoch [2/2], Iter [456/3125], train_loss:0.111473
Epoch [2/2], Iter [457/3125], train_loss:0.103065
Epoch [2/2], Iter [458/3125], train_loss:0.108422
Epoch [2/2], Iter [459/3125], train_loss:0.102061
Epoch [2/2], Iter [460/3125], train_loss:0.102083
Epoch [2/2], Iter [461/3125], train_loss:0.109224
Epoch [2/2], Iter [462/3125], train_loss:0.104043
Epoch [2/2], Iter [463/3125], train_loss:0.065878
Epoch [2/2], Iter [464/3125], train_loss:0.091389
Epoch [2/2], Iter [465/3125], train_loss:0.115812
Epoch [2/2], Iter [466/3125], train_loss:0.118369
Epoch [2/2], Iter [467/3125], train_loss:0.068617
Epoch [2/2], Iter [468/3125], train_loss:0.088816
Epoch [2/2], Iter [469/3125], train_loss:0.150452
Epoch [2/2], Iter [470/3125], train_loss:0.059345
Epoch [2/2], Iter [471/3125], train_loss:0.066618
Epoch [2/2], Iter [472/3125], train_loss:0.102710
Epoch [2/2], Iter [473/3125], train_loss:0.075018
Epoch [2/2], Iter [474/3125], train_loss:0.122839
Epoch [2/2], Iter [475/3125], train_loss:0.114021
Epoch [2/2], Iter [476/3125], train_loss:0.086777
Epoch [2/2], Iter [477/3125], train_loss:0.102576
Epoch [2/2], Iter [478/3125], train_loss:0.078979
Epoch [2/2], Iter [479/3125], train_loss:0.097320
Epoch [2/2], Iter [480/3125], train_loss:0.112049
Epoch [2/2], Iter [481/3125], train_loss:0.097673
Epoch [2/2], Iter [482/3125], train_loss:0.103756
Epoch [2/2], Iter [483/3125], train_loss:0.085546
Epoch [2/2], Iter [484/3125], train_loss:0.134447
Epoch [2/2], Iter [485/3125], train_loss:0.081610
Epoch [2/2], Iter [486/3125], train_loss:0.113824
Epoch [2/2], Iter [487/3125], train_loss:0.079254
Epoch [2/2], Iter [488/3125], train_loss:0.098650
Epoch [2/2], Iter [489/3125], train_loss:0.108382
Epoch [2/2], Iter [490/3125], train_loss:0.076616
Epoch [2/2], Iter [491/3125], train_loss:0.085238
Epoch [2/2], Iter [492/3125], train_loss:0.135156
Epoch [2/2], Iter [493/3125], train_loss:0.090402
Epoch [2/2], Iter [494/3125], train_loss:0.106814
Epoch [2/2], Iter [495/3125], train_loss:0.088576
Epoch [2/2], Iter [496/3125], train_loss:0.104555
Epoch [2/2], Iter [497/3125], train_loss:0.088838
Epoch [2/2], Iter [498/3125], train_loss:0.103274
Epoch [2/2], Iter [499/3125], train_loss:0.104177
Epoch [2/2], Iter [500/3125], train_loss:0.077060
Epoch [2/2], Iter [501/3125], train_loss:0.071030
Epoch [2/2], Iter [502/3125], train_loss:0.105627
Epoch [2/2], Iter [503/3125], train_loss:0.068488
Epoch [2/2], Iter [504/3125], train_loss:0.067340
Epoch [2/2], Iter [505/3125], train_loss:0.101247
Epoch [2/2], Iter [506/3125], train_loss:0.120195
Epoch [2/2], Iter [507/3125], train_loss:0.096677
Epoch [2/2], Iter [508/3125], train_loss:0.093882
Epoch [2/2], Iter [509/3125], train_loss:0.097796
Epoch [2/2], Iter [510/3125], train_loss:0.109570
Epoch [2/2], Iter [511/3125], train_loss:0.117683
Epoch [2/2], Iter [512/3125], train_loss:0.152239
Epoch [2/2], Iter [513/3125], train_loss:0.110212
Epoch [2/2], Iter [514/3125], train_loss:0.112285
Epoch [2/2], Iter [515/3125], train_loss:0.114113
Epoch [2/2], Iter [516/3125], train_loss:0.114004
Epoch [2/2], Iter [517/3125], train_loss:0.102815
Epoch [2/2], Iter [518/3125], train_loss:0.143307
Epoch [2/2], Iter [519/3125], train_loss:0.093839
Epoch [2/2], Iter [520/3125], train_loss:0.082347
Epoch [2/2], Iter [521/3125], train_loss:0.065753
Epoch [2/2], Iter [522/3125], train_loss:0.070755
Epoch [2/2], Iter [523/3125], train_loss:0.083399
Epoch [2/2], Iter [524/3125], train_loss:0.107254
Epoch [2/2], Iter [525/3125], train_loss:0.107849
Epoch [2/2], Iter [526/3125], train_loss:0.109029
Epoch [2/2], Iter [527/3125], train_loss:0.073447
Epoch [2/2], Iter [528/3125], train_loss:0.121817
Epoch [2/2], Iter [529/3125], train_loss:0.104663
Epoch [2/2], Iter [530/3125], train_loss:0.094757
Epoch [2/2], Iter [531/3125], train_loss:0.116653
Epoch [2/2], Iter [532/3125], train_loss:0.086909
Epoch [2/2], Iter [533/3125], train_loss:0.111515
Epoch [2/2], Iter [534/3125], train_loss:0.075181
Epoch [2/2], Iter [535/3125], train_loss:0.084049
Epoch [2/2], Iter [536/3125], train_loss:0.156880
Epoch [2/2], Iter [537/3125], train_loss:0.090378
Epoch [2/2], Iter [538/3125], train_loss:0.120230
Epoch [2/2], Iter [539/3125], train_loss:0.064216
Epoch [2/2], Iter [540/3125], train_loss:0.132715
Epoch [2/2], Iter [541/3125], train_loss:0.131452
Epoch [2/2], Iter [542/3125], train_loss:0.101619
Epoch [2/2], Iter [543/3125], train_loss:0.100493
Epoch [2/2], Iter [544/3125], train_loss:0.092979
Epoch [2/2], Iter [545/3125], train_loss:0.080726
Epoch [2/2], Iter [546/3125], train_loss:0.091035
Epoch [2/2], Iter [547/3125], train_loss:0.100602
Epoch [2/2], Iter [548/3125], train_loss:0.094904
Epoch [2/2], Iter [549/3125], train_loss:0.121439
Epoch [2/2], Iter [550/3125], train_loss:0.121370
Epoch [2/2], Iter [551/3125], train_loss:0.083671
Epoch [2/2], Iter [552/3125], train_loss:0.110429
Epoch [2/2], Iter [553/3125], train_loss:0.105332
Epoch [2/2], Iter [554/3125], train_loss:0.087366
Epoch [2/2], Iter [555/3125], train_loss:0.082316
Epoch [2/2], Iter [556/3125], train_loss:0.099882
Epoch [2/2], Iter [557/3125], train_loss:0.111021
Epoch [2/2], Iter [558/3125], train_loss:0.077680
Epoch [2/2], Iter [559/3125], train_loss:0.109377
Epoch [2/2], Iter [560/3125], train_loss:0.080302
Epoch [2/2], Iter [561/3125], train_loss:0.105432
Epoch [2/2], Iter [562/3125], train_loss:0.113619
Epoch [2/2], Iter [563/3125], train_loss:0.094069
Epoch [2/2], Iter [564/3125], train_loss:0.096262
Epoch [2/2], Iter [565/3125], train_loss:0.084621
Epoch [2/2], Iter [566/3125], train_loss:0.124599
Epoch [2/2], Iter [567/3125], train_loss:0.124162
Epoch [2/2], Iter [568/3125], train_loss:0.106849
Epoch [2/2], Iter [569/3125], train_loss:0.100125
Epoch [2/2], Iter [570/3125], train_loss:0.097650
Epoch [2/2], Iter [571/3125], train_loss:0.079950
Epoch [2/2], Iter [572/3125], train_loss:0.124764
Epoch [2/2], Iter [573/3125], train_loss:0.087671
Epoch [2/2], Iter [574/3125], train_loss:0.106283
Epoch [2/2], Iter [575/3125], train_loss:0.063669
Epoch [2/2], Iter [576/3125], train_loss:0.109756
Epoch [2/2], Iter [577/3125], train_loss:0.076927
Epoch [2/2], Iter [578/3125], train_loss:0.089796
Epoch [2/2], Iter [579/3125], train_loss:0.091205
Epoch [2/2], Iter [580/3125], train_loss:0.083034
Epoch [2/2], Iter [581/3125], train_loss:0.084445
Epoch [2/2], Iter [582/3125], train_loss:0.101539
Epoch [2/2], Iter [583/3125], train_loss:0.098867
Epoch [2/2], Iter [584/3125], train_loss:0.113716
Epoch [2/2], Iter [585/3125], train_loss:0.071058
Epoch [2/2], Iter [586/3125], train_loss:0.098496
Epoch [2/2], Iter [587/3125], train_loss:0.108242
Epoch [2/2], Iter [588/3125], train_loss:0.092561
Epoch [2/2], Iter [589/3125], train_loss:0.074094
Epoch [2/2], Iter [590/3125], train_loss:0.097281
Epoch [2/2], Iter [591/3125], train_loss:0.087513
Epoch [2/2], Iter [592/3125], train_loss:0.086917
Epoch [2/2], Iter [593/3125], train_loss:0.126143
Epoch [2/2], Iter [594/3125], train_loss:0.104166
Epoch [2/2], Iter [595/3125], train_loss:0.095785
Epoch [2/2], Iter [596/3125], train_loss:0.096451
Epoch [2/2], Iter [597/3125], train_loss:0.112868
Epoch [2/2], Iter [598/3125], train_loss:0.091374
Epoch [2/2], Iter [599/3125], train_loss:0.111677
Epoch [2/2], Iter [600/3125], train_loss:0.096349
Epoch [2/2], Iter [601/3125], train_loss:0.076007
Epoch [2/2], Iter [602/3125], train_loss:0.100855
Epoch [2/2], Iter [603/3125], train_loss:0.081808
Epoch [2/2], Iter [604/3125], train_loss:0.087975
Epoch [2/2], Iter [605/3125], train_loss:0.074303
Epoch [2/2], Iter [606/3125], train_loss:0.119068
Epoch [2/2], Iter [607/3125], train_loss:0.069057
Epoch [2/2], Iter [608/3125], train_loss:0.081503
Epoch [2/2], Iter [609/3125], train_loss:0.113753
Epoch [2/2], Iter [610/3125], train_loss:0.091258
Epoch [2/2], Iter [611/3125], train_loss:0.075648
Epoch [2/2], Iter [612/3125], train_loss:0.086869
Epoch [2/2], Iter [613/3125], train_loss:0.085953
Epoch [2/2], Iter [614/3125], train_loss:0.083555
Epoch [2/2], Iter [615/3125], train_loss:0.068392
Epoch [2/2], Iter [616/3125], train_loss:0.082908
Epoch [2/2], Iter [617/3125], train_loss:0.097139
Epoch [2/2], Iter [618/3125], train_loss:0.088849
Epoch [2/2], Iter [619/3125], train_loss:0.114269
Epoch [2/2], Iter [620/3125], train_loss:0.096929
Epoch [2/2], Iter [621/3125], train_loss:0.099542
Epoch [2/2], Iter [622/3125], train_loss:0.089321
Epoch [2/2], Iter [623/3125], train_loss:0.123321
Epoch [2/2], Iter [624/3125], train_loss:0.079554
Epoch [2/2], Iter [625/3125], train_loss:0.082541
Epoch [2/2], Iter [626/3125], train_loss:0.085805
Epoch [2/2], Iter [627/3125], train_loss:0.116099
Epoch [2/2], Iter [628/3125], train_loss:0.062045
Epoch [2/2], Iter [629/3125], train_loss:0.093665
Epoch [2/2], Iter [630/3125], train_loss:0.096117
Epoch [2/2], Iter [631/3125], train_loss:0.120881
Epoch [2/2], Iter [632/3125], train_loss:0.086188
Epoch [2/2], Iter [633/3125], train_loss:0.090466
Epoch [2/2], Iter [634/3125], train_loss:0.109846
Epoch [2/2], Iter [635/3125], train_loss:0.098191
Epoch [2/2], Iter [636/3125], train_loss:0.101009
Epoch [2/2], Iter [637/3125], train_loss:0.072900
Epoch [2/2], Iter [638/3125], train_loss:0.122198
Epoch [2/2], Iter [639/3125], train_loss:0.110124
Epoch [2/2], Iter [640/3125], train_loss:0.085853
Epoch [2/2], Iter [641/3125], train_loss:0.110393
Epoch [2/2], Iter [642/3125], train_loss:0.105882
Epoch [2/2], Iter [643/3125], train_loss:0.099858
Epoch [2/2], Iter [644/3125], train_loss:0.106550
Epoch [2/2], Iter [645/3125], train_loss:0.093056
Epoch [2/2], Iter [646/3125], train_loss:0.108176
Epoch [2/2], Iter [647/3125], train_loss:0.107052
Epoch [2/2], Iter [648/3125], train_loss:0.083282
Epoch [2/2], Iter [649/3125], train_loss:0.069446
Epoch [2/2], Iter [650/3125], train_loss:0.101450
Epoch [2/2], Iter [651/3125], train_loss:0.086882
Epoch [2/2], Iter [652/3125], train_loss:0.084529
Epoch [2/2], Iter [653/3125], train_loss:0.091770
Epoch [2/2], Iter [654/3125], train_loss:0.079131
Epoch [2/2], Iter [655/3125], train_loss:0.120871
Epoch [2/2], Iter [656/3125], train_loss:0.091773
Epoch [2/2], Iter [657/3125], train_loss:0.104853
Epoch [2/2], Iter [658/3125], train_loss:0.095033
Epoch [2/2], Iter [659/3125], train_loss:0.095691
Epoch [2/2], Iter [660/3125], train_loss:0.108144
Epoch [2/2], Iter [661/3125], train_loss:0.092027
Epoch [2/2], Iter [662/3125], train_loss:0.071688
Epoch [2/2], Iter [663/3125], train_loss:0.099780
Epoch [2/2], Iter [664/3125], train_loss:0.084860
Epoch [2/2], Iter [665/3125], train_loss:0.081114
Epoch [2/2], Iter [666/3125], train_loss:0.086606
Epoch [2/2], Iter [667/3125], train_loss:0.099935
Epoch [2/2], Iter [668/3125], train_loss:0.108894
Epoch [2/2], Iter [669/3125], train_loss:0.080974
Epoch [2/2], Iter [670/3125], train_loss:0.087669
Epoch [2/2], Iter [671/3125], train_loss:0.104220
Epoch [2/2], Iter [672/3125], train_loss:0.098142
Epoch [2/2], Iter [673/3125], train_loss:0.118249
Epoch [2/2], Iter [674/3125], train_loss:0.104474
Epoch [2/2], Iter [675/3125], train_loss:0.105180
Epoch [2/2], Iter [676/3125], train_loss:0.116002
Epoch [2/2], Iter [677/3125], train_loss:0.086220
Epoch [2/2], Iter [678/3125], train_loss:0.119653
Epoch [2/2], Iter [679/3125], train_loss:0.119114
Epoch [2/2], Iter [680/3125], train_loss:0.093704
Epoch [2/2], Iter [681/3125], train_loss:0.082358
Epoch [2/2], Iter [682/3125], train_loss:0.068221
Epoch [2/2], Iter [683/3125], train_loss:0.073008
Epoch [2/2], Iter [684/3125], train_loss:0.062461
Epoch [2/2], Iter [685/3125], train_loss:0.053876
Epoch [2/2], Iter [686/3125], train_loss:0.112768
Epoch [2/2], Iter [687/3125], train_loss:0.087811
Epoch [2/2], Iter [688/3125], train_loss:0.087970
Epoch [2/2], Iter [689/3125], train_loss:0.126323
Epoch [2/2], Iter [690/3125], train_loss:0.060084
Epoch [2/2], Iter [691/3125], train_loss:0.071475
Epoch [2/2], Iter [692/3125], train_loss:0.077108
Epoch [2/2], Iter [693/3125], train_loss:0.090324
Epoch [2/2], Iter [694/3125], train_loss:0.115778
Epoch [2/2], Iter [695/3125], train_loss:0.091183
Epoch [2/2], Iter [696/3125], train_loss:0.105349
Epoch [2/2], Iter [697/3125], train_loss:0.110092
Epoch [2/2], Iter [698/3125], train_loss:0.107705
Epoch [2/2], Iter [699/3125], train_loss:0.086618
Epoch [2/2], Iter [700/3125], train_loss:0.133944
Epoch [2/2], Iter [701/3125], train_loss:0.080485
Epoch [2/2], Iter [702/3125], train_loss:0.094014
Epoch [2/2], Iter [703/3125], train_loss:0.101598
Epoch [2/2], Iter [704/3125], train_loss:0.102957
Epoch [2/2], Iter [705/3125], train_loss:0.075928
Epoch [2/2], Iter [706/3125], train_loss:0.120276
Epoch [2/2], Iter [707/3125], train_loss:0.063608
Epoch [2/2], Iter [708/3125], train_loss:0.111435
Epoch [2/2], Iter [709/3125], train_loss:0.087704
Epoch [2/2], Iter [710/3125], train_loss:0.104987
Epoch [2/2], Iter [711/3125], train_loss:0.113673
Epoch [2/2], Iter [712/3125], train_loss:0.110319
Epoch [2/2], Iter [713/3125], train_loss:0.109937
Epoch [2/2], Iter [714/3125], train_loss:0.113730
Epoch [2/2], Iter [715/3125], train_loss:0.054402
Epoch [2/2], Iter [716/3125], train_loss:0.159296
Epoch [2/2], Iter [717/3125], train_loss:0.099721
Epoch [2/2], Iter [718/3125], train_loss:0.079371
Epoch [2/2], Iter [719/3125], train_loss:0.073157
Epoch [2/2], Iter [720/3125], train_loss:0.089477
Epoch [2/2], Iter [721/3125], train_loss:0.096350
Epoch [2/2], Iter [722/3125], train_loss:0.076988
Epoch [2/2], Iter [723/3125], train_loss:0.091401
Epoch [2/2], Iter [724/3125], train_loss:0.094071
Epoch [2/2], Iter [725/3125], train_loss:0.099668
Epoch [2/2], Iter [726/3125], train_loss:0.077234
Epoch [2/2], Iter [727/3125], train_loss:0.069081
Epoch [2/2], Iter [728/3125], train_loss:0.070330
Epoch [2/2], Iter [729/3125], train_loss:0.104584
Epoch [2/2], Iter [730/3125], train_loss:0.079599
Epoch [2/2], Iter [731/3125], train_loss:0.091007
Epoch [2/2], Iter [732/3125], train_loss:0.129703
Epoch [2/2], Iter [733/3125], train_loss:0.053601
Epoch [2/2], Iter [734/3125], train_loss:0.100923
Epoch [2/2], Iter [735/3125], train_loss:0.118555
Epoch [2/2], Iter [736/3125], train_loss:0.088056
Epoch [2/2], Iter [737/3125], train_loss:0.129550
Epoch [2/2], Iter [738/3125], train_loss:0.089502
Epoch [2/2], Iter [739/3125], train_loss:0.068963
Epoch [2/2], Iter [740/3125], train_loss:0.095034
Epoch [2/2], Iter [741/3125], train_loss:0.123924
Epoch [2/2], Iter [742/3125], train_loss:0.062268
Epoch [2/2], Iter [743/3125], train_loss:0.105786
Epoch [2/2], Iter [744/3125], train_loss:0.093041
Epoch [2/2], Iter [745/3125], train_loss:0.128233
Epoch [2/2], Iter [746/3125], train_loss:0.085857
Epoch [2/2], Iter [747/3125], train_loss:0.093941
Epoch [2/2], Iter [748/3125], train_loss:0.093465
Epoch [2/2], Iter [749/3125], train_loss:0.073185
Epoch [2/2], Iter [750/3125], train_loss:0.079939
Epoch [2/2], Iter [751/3125], train_loss:0.086033
Epoch [2/2], Iter [752/3125], train_loss:0.110138
Epoch [2/2], Iter [753/3125], train_loss:0.087187
Epoch [2/2], Iter [754/3125], train_loss:0.119257
Epoch [2/2], Iter [755/3125], train_loss:0.101958
Epoch [2/2], Iter [756/3125], train_loss:0.067140
Epoch [2/2], Iter [757/3125], train_loss:0.079778
Epoch [2/2], Iter [758/3125], train_loss:0.098867
Epoch [2/2], Iter [759/3125], train_loss:0.066322
Epoch [2/2], Iter [760/3125], train_loss:0.089248
Epoch [2/2], Iter [761/3125], train_loss:0.097678
Epoch [2/2], Iter [762/3125], train_loss:0.120523
Epoch [2/2], Iter [763/3125], train_loss:0.104695
Epoch [2/2], Iter [764/3125], train_loss:0.107009
Epoch [2/2], Iter [765/3125], train_loss:0.103234
Epoch [2/2], Iter [766/3125], train_loss:0.100424
Epoch [2/2], Iter [767/3125], train_loss:0.084092
Epoch [2/2], Iter [768/3125], train_loss:0.083450
Epoch [2/2], Iter [769/3125], train_loss:0.086751
Epoch [2/2], Iter [770/3125], train_loss:0.073314
Epoch [2/2], Iter [771/3125], train_loss:0.087713
Epoch [2/2], Iter [772/3125], train_loss:0.091291
Epoch [2/2], Iter [773/3125], train_loss:0.096915
Epoch [2/2], Iter [774/3125], train_loss:0.100215
Epoch [2/2], Iter [775/3125], train_loss:0.104935
Epoch [2/2], Iter [776/3125], train_loss:0.118939
Epoch [2/2], Iter [777/3125], train_loss:0.116502
Epoch [2/2], Iter [778/3125], train_loss:0.100367
Epoch [2/2], Iter [779/3125], train_loss:0.101167
Epoch [2/2], Iter [780/3125], train_loss:0.102839
Epoch [2/2], Iter [781/3125], train_loss:0.066892
Epoch [2/2], Iter [782/3125], train_loss:0.087467
Epoch [2/2], Iter [783/3125], train_loss:0.101108
Epoch [2/2], Iter [784/3125], train_loss:0.096700
Epoch [2/2], Iter [785/3125], train_loss:0.087809
Epoch [2/2], Iter [786/3125], train_loss:0.095772
Epoch [2/2], Iter [787/3125], train_loss:0.064771
Epoch [2/2], Iter [788/3125], train_loss:0.103117
Epoch [2/2], Iter [789/3125], train_loss:0.074872
Epoch [2/2], Iter [790/3125], train_loss:0.136279
Epoch [2/2], Iter [791/3125], train_loss:0.069266
Epoch [2/2], Iter [792/3125], train_loss:0.076346
Epoch [2/2], Iter [793/3125], train_loss:0.077704
Epoch [2/2], Iter [794/3125], train_loss:0.099309
Epoch [2/2], Iter [795/3125], train_loss:0.093810
Epoch [2/2], Iter [796/3125], train_loss:0.092663
Epoch [2/2], Iter [797/3125], train_loss:0.070305
Epoch [2/2], Iter [798/3125], train_loss:0.106723
Epoch [2/2], Iter [799/3125], train_loss:0.081737
Epoch [2/2], Iter [800/3125], train_loss:0.110722
Epoch [2/2], Iter [801/3125], train_loss:0.098199
Epoch [2/2], Iter [802/3125], train_loss:0.105921
Epoch [2/2], Iter [803/3125], train_loss:0.074993
Epoch [2/2], Iter [804/3125], train_loss:0.082455
Epoch [2/2], Iter [805/3125], train_loss:0.084609
Epoch [2/2], Iter [806/3125], train_loss:0.081505
Epoch [2/2], Iter [807/3125], train_loss:0.114460
Epoch [2/2], Iter [808/3125], train_loss:0.089111
Epoch [2/2], Iter [809/3125], train_loss:0.078759
Epoch [2/2], Iter [810/3125], train_loss:0.093516
Epoch [2/2], Iter [811/3125], train_loss:0.093906
Epoch [2/2], Iter [812/3125], train_loss:0.095975
Epoch [2/2], Iter [813/3125], train_loss:0.103670
Epoch [2/2], Iter [814/3125], train_loss:0.096167
Epoch [2/2], Iter [815/3125], train_loss:0.085567
Epoch [2/2], Iter [816/3125], train_loss:0.095904
Epoch [2/2], Iter [817/3125], train_loss:0.095014
Epoch [2/2], Iter [818/3125], train_loss:0.095261
Epoch [2/2], Iter [819/3125], train_loss:0.105797
Epoch [2/2], Iter [820/3125], train_loss:0.076541
Epoch [2/2], Iter [821/3125], train_loss:0.076522
Epoch [2/2], Iter [822/3125], train_loss:0.104505
Epoch [2/2], Iter [823/3125], train_loss:0.106988
Epoch [2/2], Iter [824/3125], train_loss:0.103925
Epoch [2/2], Iter [825/3125], train_loss:0.109792
Epoch [2/2], Iter [826/3125], train_loss:0.091824
Epoch [2/2], Iter [827/3125], train_loss:0.101664
Epoch [2/2], Iter [828/3125], train_loss:0.135664
Epoch [2/2], Iter [829/3125], train_loss:0.062098
Epoch [2/2], Iter [830/3125], train_loss:0.096688
Epoch [2/2], Iter [831/3125], train_loss:0.083266
Epoch [2/2], Iter [832/3125], train_loss:0.074664
Epoch [2/2], Iter [833/3125], train_loss:0.136668
Epoch [2/2], Iter [834/3125], train_loss:0.117845
Epoch [2/2], Iter [835/3125], train_loss:0.109683
Epoch [2/2], Iter [836/3125], train_loss:0.080236
Epoch [2/2], Iter [837/3125], train_loss:0.063216
Epoch [2/2], Iter [838/3125], train_loss:0.128305
Epoch [2/2], Iter [839/3125], train_loss:0.062488
Epoch [2/2], Iter [840/3125], train_loss:0.144444
Epoch [2/2], Iter [841/3125], train_loss:0.119419
Epoch [2/2], Iter [842/3125], train_loss:0.077271
Epoch [2/2], Iter [843/3125], train_loss:0.108360
Epoch [2/2], Iter [844/3125], train_loss:0.093583
Epoch [2/2], Iter [845/3125], train_loss:0.103373
Epoch [2/2], Iter [846/3125], train_loss:0.105248
Epoch [2/2], Iter [847/3125], train_loss:0.071489
Epoch [2/2], Iter [848/3125], train_loss:0.091004
Epoch [2/2], Iter [849/3125], train_loss:0.104574
Epoch [2/2], Iter [850/3125], train_loss:0.066352
Epoch [2/2], Iter [851/3125], train_loss:0.075491
Epoch [2/2], Iter [852/3125], train_loss:0.090248
Epoch [2/2], Iter [853/3125], train_loss:0.141754
Epoch [2/2], Iter [854/3125], train_loss:0.111203
Epoch [2/2], Iter [855/3125], train_loss:0.101882
Epoch [2/2], Iter [856/3125], train_loss:0.080121
Epoch [2/2], Iter [857/3125], train_loss:0.109338
Epoch [2/2], Iter [858/3125], train_loss:0.074698
Epoch [2/2], Iter [859/3125], train_loss:0.078181
Epoch [2/2], Iter [860/3125], train_loss:0.080490
Epoch [2/2], Iter [861/3125], train_loss:0.070324
Epoch [2/2], Iter [862/3125], train_loss:0.091529
Epoch [2/2], Iter [863/3125], train_loss:0.099398
Epoch [2/2], Iter [864/3125], train_loss:0.116627
Epoch [2/2], Iter [865/3125], train_loss:0.114276
Epoch [2/2], Iter [866/3125], train_loss:0.093187
Epoch [2/2], Iter [867/3125], train_loss:0.069209
Epoch [2/2], Iter [868/3125], train_loss:0.104793
Epoch [2/2], Iter [869/3125], train_loss:0.073808
Epoch [2/2], Iter [870/3125], train_loss:0.092707
Epoch [2/2], Iter [871/3125], train_loss:0.085808
Epoch [2/2], Iter [872/3125], train_loss:0.099127
Epoch [2/2], Iter [873/3125], train_loss:0.094822
Epoch [2/2], Iter [874/3125], train_loss:0.081842
Epoch [2/2], Iter [875/3125], train_loss:0.083346
Epoch [2/2], Iter [876/3125], train_loss:0.109375
Epoch [2/2], Iter [877/3125], train_loss:0.069028
Epoch [2/2], Iter [878/3125], train_loss:0.088529
Epoch [2/2], Iter [879/3125], train_loss:0.082911
Epoch [2/2], Iter [880/3125], train_loss:0.064488
Epoch [2/2], Iter [881/3125], train_loss:0.109088
Epoch [2/2], Iter [882/3125], train_loss:0.086650
Epoch [2/2], Iter [883/3125], train_loss:0.069423
Epoch [2/2], Iter [884/3125], train_loss:0.082668
Epoch [2/2], Iter [885/3125], train_loss:0.101943
Epoch [2/2], Iter [886/3125], train_loss:0.062625
Epoch [2/2], Iter [887/3125], train_loss:0.067995
Epoch [2/2], Iter [888/3125], train_loss:0.085687
Epoch [2/2], Iter [889/3125], train_loss:0.065357
Epoch [2/2], Iter [890/3125], train_loss:0.071787
Epoch [2/2], Iter [891/3125], train_loss:0.081613
Epoch [2/2], Iter [892/3125], train_loss:0.072062
Epoch [2/2], Iter [893/3125], train_loss:0.104661
Epoch [2/2], Iter [894/3125], train_loss:0.087902
Epoch [2/2], Iter [895/3125], train_loss:0.130290
Epoch [2/2], Iter [896/3125], train_loss:0.075751
Epoch [2/2], Iter [897/3125], train_loss:0.083584
Epoch [2/2], Iter [898/3125], train_loss:0.088319
Epoch [2/2], Iter [899/3125], train_loss:0.107320
Epoch [2/2], Iter [900/3125], train_loss:0.069297
Epoch [2/2], Iter [901/3125], train_loss:0.059855
Epoch [2/2], Iter [902/3125], train_loss:0.090469
Epoch [2/2], Iter [903/3125], train_loss:0.083430
Epoch [2/2], Iter [904/3125], train_loss:0.060752
Epoch [2/2], Iter [905/3125], train_loss:0.088156
Epoch [2/2], Iter [906/3125], train_loss:0.089071
Epoch [2/2], Iter [907/3125], train_loss:0.084885
Epoch [2/2], Iter [908/3125], train_loss:0.048224
Epoch [2/2], Iter [909/3125], train_loss:0.113041
Epoch [2/2], Iter [910/3125], train_loss:0.116053
Epoch [2/2], Iter [911/3125], train_loss:0.074417
Epoch [2/2], Iter [912/3125], train_loss:0.091008
Epoch [2/2], Iter [913/3125], train_loss:0.092575
Epoch [2/2], Iter [914/3125], train_loss:0.113760
Epoch [2/2], Iter [915/3125], train_loss:0.120776
Epoch [2/2], Iter [916/3125], train_loss:0.139293
Epoch [2/2], Iter [917/3125], train_loss:0.069343
Epoch [2/2], Iter [918/3125], train_loss:0.098188
Epoch [2/2], Iter [919/3125], train_loss:0.061732
Epoch [2/2], Iter [920/3125], train_loss:0.138873
Epoch [2/2], Iter [921/3125], train_loss:0.108592
Epoch [2/2], Iter [922/3125], train_loss:0.108380
Epoch [2/2], Iter [923/3125], train_loss:0.089235
Epoch [2/2], Iter [924/3125], train_loss:0.098835
Epoch [2/2], Iter [925/3125], train_loss:0.084797
Epoch [2/2], Iter [926/3125], train_loss:0.086078
Epoch [2/2], Iter [927/3125], train_loss:0.096045
Epoch [2/2], Iter [928/3125], train_loss:0.103381
Epoch [2/2], Iter [929/3125], train_loss:0.064686
Epoch [2/2], Iter [930/3125], train_loss:0.101205
Epoch [2/2], Iter [931/3125], train_loss:0.083386
Epoch [2/2], Iter [932/3125], train_loss:0.124332
Epoch [2/2], Iter [933/3125], train_loss:0.071771
Epoch [2/2], Iter [934/3125], train_loss:0.068327
Epoch [2/2], Iter [935/3125], train_loss:0.069932
Epoch [2/2], Iter [936/3125], train_loss:0.088089
Epoch [2/2], Iter [937/3125], train_loss:0.088597
Epoch [2/2], Iter [938/3125], train_loss:0.104114
Epoch [2/2], Iter [939/3125], train_loss:0.083072
Epoch [2/2], Iter [940/3125], train_loss:0.101029
Epoch [2/2], Iter [941/3125], train_loss:0.108483
Epoch [2/2], Iter [942/3125], train_loss:0.100051
Epoch [2/2], Iter [943/3125], train_loss:0.106296
Epoch [2/2], Iter [944/3125], train_loss:0.072279
Epoch [2/2], Iter [945/3125], train_loss:0.143448
Epoch [2/2], Iter [946/3125], train_loss:0.084587
Epoch [2/2], Iter [947/3125], train_loss:0.073256
Epoch [2/2], Iter [948/3125], train_loss:0.083115
Epoch [2/2], Iter [949/3125], train_loss:0.076965
Epoch [2/2], Iter [950/3125], train_loss:0.083379
Epoch [2/2], Iter [951/3125], train_loss:0.078656
Epoch [2/2], Iter [952/3125], train_loss:0.080206
Epoch [2/2], Iter [953/3125], train_loss:0.088033
Epoch [2/2], Iter [954/3125], train_loss:0.094281
Epoch [2/2], Iter [955/3125], train_loss:0.109771
Epoch [2/2], Iter [956/3125], train_loss:0.098340
Epoch [2/2], Iter [957/3125], train_loss:0.103174
Epoch [2/2], Iter [958/3125], train_loss:0.070675
Epoch [2/2], Iter [959/3125], train_loss:0.092117
Epoch [2/2], Iter [960/3125], train_loss:0.093642
Epoch [2/2], Iter [961/3125], train_loss:0.128867
Epoch [2/2], Iter [962/3125], train_loss:0.072056
Epoch [2/2], Iter [963/3125], train_loss:0.094215
Epoch [2/2], Iter [964/3125], train_loss:0.091706
Epoch [2/2], Iter [965/3125], train_loss:0.076420
Epoch [2/2], Iter [966/3125], train_loss:0.110798
Epoch [2/2], Iter [967/3125], train_loss:0.066716
Epoch [2/2], Iter [968/3125], train_loss:0.104807
Epoch [2/2], Iter [969/3125], train_loss:0.086580
Epoch [2/2], Iter [970/3125], train_loss:0.105679
Epoch [2/2], Iter [971/3125], train_loss:0.084984
Epoch [2/2], Iter [972/3125], train_loss:0.093323
Epoch [2/2], Iter [973/3125], train_loss:0.088777
Epoch [2/2], Iter [974/3125], train_loss:0.090154
Epoch [2/2], Iter [975/3125], train_loss:0.096426
Epoch [2/2], Iter [976/3125], train_loss:0.107699
Epoch [2/2], Iter [977/3125], train_loss:0.110699
Epoch [2/2], Iter [978/3125], train_loss:0.072643
Epoch [2/2], Iter [979/3125], train_loss:0.078052
Epoch [2/2], Iter [980/3125], train_loss:0.090422
Epoch [2/2], Iter [981/3125], train_loss:0.071456
Epoch [2/2], Iter [982/3125], train_loss:0.095594
Epoch [2/2], Iter [983/3125], train_loss:0.092027
Epoch [2/2], Iter [984/3125], train_loss:0.116863
Epoch [2/2], Iter [985/3125], train_loss:0.114535
Epoch [2/2], Iter [986/3125], train_loss:0.079183
Epoch [2/2], Iter [987/3125], train_loss:0.090277
Epoch [2/2], Iter [988/3125], train_loss:0.124222
Epoch [2/2], Iter [989/3125], train_loss:0.115095
Epoch [2/2], Iter [990/3125], train_loss:0.114542
Epoch [2/2], Iter [991/3125], train_loss:0.106006
Epoch [2/2], Iter [992/3125], train_loss:0.095041
Epoch [2/2], Iter [993/3125], train_loss:0.076730
Epoch [2/2], Iter [994/3125], train_loss:0.109610
Epoch [2/2], Iter [995/3125], train_loss:0.107274
Epoch [2/2], Iter [996/3125], train_loss:0.066058
Epoch [2/2], Iter [997/3125], train_loss:0.065898
Epoch [2/2], Iter [998/3125], train_loss:0.117909
Epoch [2/2], Iter [999/3125], train_loss:0.069444
Epoch [2/2], Iter [1000/3125], train_loss:0.107684
Epoch [2/2], Iter [1001/3125], train_loss:0.094535
Epoch [2/2], Iter [1002/3125], train_loss:0.098872
Epoch [2/2], Iter [1003/3125], train_loss:0.097507
Epoch [2/2], Iter [1004/3125], train_loss:0.091864
Epoch [2/2], Iter [1005/3125], train_loss:0.078213
Epoch [2/2], Iter [1006/3125], train_loss:0.099576
Epoch [2/2], Iter [1007/3125], train_loss:0.100277
Epoch [2/2], Iter [1008/3125], train_loss:0.124750
Epoch [2/2], Iter [1009/3125], train_loss:0.104891
Epoch [2/2], Iter [1010/3125], train_loss:0.079731
Epoch [2/2], Iter [1011/3125], train_loss:0.085950
Epoch [2/2], Iter [1012/3125], train_loss:0.084804
Epoch [2/2], Iter [1013/3125], train_loss:0.075454
Epoch [2/2], Iter [1014/3125], train_loss:0.130603
Epoch [2/2], Iter [1015/3125], train_loss:0.096016
Epoch [2/2], Iter [1016/3125], train_loss:0.090073
Epoch [2/2], Iter [1017/3125], train_loss:0.074195
Epoch [2/2], Iter [1018/3125], train_loss:0.122536
Epoch [2/2], Iter [1019/3125], train_loss:0.112131
Epoch [2/2], Iter [1020/3125], train_loss:0.109132
Epoch [2/2], Iter [1021/3125], train_loss:0.115335
Epoch [2/2], Iter [1022/3125], train_loss:0.140687
Epoch [2/2], Iter [1023/3125], train_loss:0.083916
Epoch [2/2], Iter [1024/3125], train_loss:0.095654
Epoch [2/2], Iter [1025/3125], train_loss:0.084160
Epoch [2/2], Iter [1026/3125], train_loss:0.114870
Epoch [2/2], Iter [1027/3125], train_loss:0.101187
Epoch [2/2], Iter [1028/3125], train_loss:0.082069
Epoch [2/2], Iter [1029/3125], train_loss:0.072046
Epoch [2/2], Iter [1030/3125], train_loss:0.086769
Epoch [2/2], Iter [1031/3125], train_loss:0.089113
Epoch [2/2], Iter [1032/3125], train_loss:0.061093
Epoch [2/2], Iter [1033/3125], train_loss:0.090316
Epoch [2/2], Iter [1034/3125], train_loss:0.085117
Epoch [2/2], Iter [1035/3125], train_loss:0.104584
Epoch [2/2], Iter [1036/3125], train_loss:0.081303
Epoch [2/2], Iter [1037/3125], train_loss:0.091452
Epoch [2/2], Iter [1038/3125], train_loss:0.112761
Epoch [2/2], Iter [1039/3125], train_loss:0.088501
Epoch [2/2], Iter [1040/3125], train_loss:0.084058
Epoch [2/2], Iter [1041/3125], train_loss:0.078801
Epoch [2/2], Iter [1042/3125], train_loss:0.087638
Epoch [2/2], Iter [1043/3125], train_loss:0.106893
Epoch [2/2], Iter [1044/3125], train_loss:0.087472
Epoch [2/2], Iter [1045/3125], train_loss:0.130255
Epoch [2/2], Iter [1046/3125], train_loss:0.097685
Epoch [2/2], Iter [1047/3125], train_loss:0.095756
Epoch [2/2], Iter [1048/3125], train_loss:0.115433
Epoch [2/2], Iter [1049/3125], train_loss:0.079820
Epoch [2/2], Iter [1050/3125], train_loss:0.116015
Epoch [2/2], Iter [1051/3125], train_loss:0.146984
Epoch [2/2], Iter [1052/3125], train_loss:0.129607
Epoch [2/2], Iter [1053/3125], train_loss:0.098001
Epoch [2/2], Iter [1054/3125], train_loss:0.076012
Epoch [2/2], Iter [1055/3125], train_loss:0.098679
Epoch [2/2], Iter [1056/3125], train_loss:0.079336
Epoch [2/2], Iter [1057/3125], train_loss:0.127889
Epoch [2/2], Iter [1058/3125], train_loss:0.093738
Epoch [2/2], Iter [1059/3125], train_loss:0.096781
Epoch [2/2], Iter [1060/3125], train_loss:0.079172
Epoch [2/2], Iter [1061/3125], train_loss:0.074400
Epoch [2/2], Iter [1062/3125], train_loss:0.094194
Epoch [2/2], Iter [1063/3125], train_loss:0.085245
Epoch [2/2], Iter [1064/3125], train_loss:0.094455
Epoch [2/2], Iter [1065/3125], train_loss:0.081712
Epoch [2/2], Iter [1066/3125], train_loss:0.096517
Epoch [2/2], Iter [1067/3125], train_loss:0.140057
Epoch [2/2], Iter [1068/3125], train_loss:0.087830
Epoch [2/2], Iter [1069/3125], train_loss:0.083283
Epoch [2/2], Iter [1070/3125], train_loss:0.081132
E
到了这里,关于Pytorch06-复杂模型构建的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!