深入浅出Pytorch函数——torch.nn.init.xavier_uniform_

这篇具有很好参考价值的文章主要介绍了深入浅出Pytorch函数——torch.nn.init.xavier_uniform_。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类目录:《深入浅出Pytorch函数》总目录
相关文章:
· 深入浅出Pytorch函数——torch.nn.init.calculate_gain
· 深入浅出Pytorch函数——torch.nn.init.uniform_
· 深入浅出Pytorch函数——torch.nn.init.normal_
· 深入浅出Pytorch函数——torch.nn.init.constant_
· 深入浅出Pytorch函数——torch.nn.init.ones_
· 深入浅出Pytorch函数——torch.nn.init.zeros_
· 深入浅出Pytorch函数——torch.nn.init.eye_
· 深入浅出Pytorch函数——torch.nn.init.dirac_
· 深入浅出Pytorch函数——torch.nn.init.xavier_uniform_
· 深入浅出Pytorch函数——torch.nn.init.xavier_normal_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_
· 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_
· 深入浅出Pytorch函数——torch.nn.init.trunc_normal_
· 深入浅出Pytorch函数——torch.nn.init.orthogonal_
· 深入浅出Pytorch函数——torch.nn.init.sparse_


torch.nn.init模块中的所有函数都用于初始化神经网络参数,因此它们都在torc.no_grad()模式下运行,autograd不会将其考虑在内。

根据Glorot, X.和Bengio, Y.在《Understanding the difficulty of training deep feedforward neural networks》中描述的方法,用一个均匀分布生成值,填充输入的张量或变量。结果张量中的值采样自 U ( − a , a ) U(-a, a) U(a,a),其中:
a = gain × 6 fan_in + fan_put a=\text{gain}\times\sqrt{\frac{6}{\text{fan\_in}+\text{fan\_put}}} a=gain×fan_in+fan_put6

这种方法也被称为Glorot initialization。

语法
torch.nn.init.xavier_uniform_(tensor, gain=1)
参数
  • tensor:[Tensor] 一个 N N N维张量torch.Tensor
  • gain :[float] 可选的缩放因子
返回值

一个torch.Tensor且参数tensor也会更新文章来源地址https://www.toymoban.com/news/detail-667198.html

实例
w = torch.empty(3, 5)
nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
函数实现
def xavier_uniform_(tensor: Tensor, gain: float = 1.) -> Tensor:
    r"""Fills the input `Tensor` with values according to the method
    described in `Understanding the difficulty of training deep feedforward
    neural networks` - Glorot, X. & Bengio, Y. (2010), using a uniform
    distribution. The resulting tensor will have values sampled from
    :math:`\mathcal{U}(-a, a)` where

    .. math::
        a = \text{gain} \times \sqrt{\frac{6}{\text{fan\_in} + \text{fan\_out}}}

    Also known as Glorot initialization.

    Args:
        tensor: an n-dimensional `torch.Tensor`
        gain: an optional scaling factor

    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
    """
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
    std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
    a = math.sqrt(3.0) * std  # Calculate uniform bounds from standard deviation

    return _no_grad_uniform_(tensor, -a, a)

到了这里,关于深入浅出Pytorch函数——torch.nn.init.xavier_uniform_的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入浅出Pytorch函数——torch.nn.init.dirac_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(40)
  • 深入浅出Pytorch函数——torch.nn.init.constant_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(39)
  • 深入浅出Pytorch函数——torch.nn.init.calculate_gain

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月11日
    浏览(39)
  • 深入浅出Pytorch函数——torch.nn.init.kaiming_uniform_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(51)
  • 深入浅出Pytorch函数——torch.nn.init.kaiming_normal_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(48)
  • 深入浅出Pytorch函数——torch.nn.init.trunc_normal_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月11日
    浏览(39)
  • 深入浅出Pytorch函数——torch.nn.init.xavier_normal_

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 深入浅出Pytorch函数——torch.nn.init.calculate_gain · 深入浅出Pytorch函数——torch.nn.init.uniform_ · 深入浅出Pytorch函数——torch.nn.init.normal_ · 深入浅出Pytorch函数——torch.nn.init.constant_ · 深入浅出Pytorch函数——torch.nn.init.ones_ ·

    2024年02月12日
    浏览(40)
  • 深入浅出Pytorch函数——torch.nn.Linear

    分类目录:《深入浅出Pytorch函数》总目录 对输入数据做线性变换 y = x A T + b y=xA^T+b y = x A T + b 语法 参数 in_features :[ int ] 每个输入样本的大小 out_features :[ int ] 每个输出样本的大小 bias :[ bool ] 若设置为 False ,则该层不会学习偏置项目,默认值为 True 变量形状 输入变量:

    2024年02月12日
    浏览(43)
  • 深入浅出Pytorch函数——torch.nn.Softmax

    分类目录:《深入浅出Pytorch函数》总目录 相关文章: · 机器学习中的数学——激活函数:Softmax函数 · 深入浅出Pytorch函数——torch.softmax/torch.nn.functional.softmax · 深入浅出Pytorch函数——torch.nn.Softmax 将Softmax函数应用于 n n n 维输入张量,重新缩放它们,使得 n n n 维输出张量的

    2024年02月15日
    浏览(54)
  • 深入浅出Pytorch函数——torch.nn.Module

    分类目录:《深入浅出Pytorch函数》总目录 Pytorch中所有网络的基类,我们的模型也应该继承这个类。 Modules 也可以包含其它 Modules ,允许使用树结构嵌入他们,我们还可以将子模块赋值给模型属性。 语法 方法 torch.nn.Module.apply 实例 通过上面方式赋值的 submodule 会被注册,当调

    2024年02月12日
    浏览(65)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包