【精选论文 | Capon算法与MUSIC算法性能的比较与分析】

这篇具有很好参考价值的文章主要介绍了【精选论文 | Capon算法与MUSIC算法性能的比较与分析】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文编辑:调皮哥的小助理

【精选论文 | Capon算法与MUSIC算法性能的比较与分析】,自动驾驶中的雷达处理算法,算法,人工智能

【正文】

首先说结论:

当信噪比(SNR)足够大时,Capon算法和MUSIC算法的空间谱非常相似,因此在SNR比较大时它们的性能几乎一样,当不同信号源的入射角度比较接近时,MUSIC算法的性能优于Capon,这也是MUSIC算法(或者说子空间类算法)被称为高分辨率算法的原因。

原文:On one hand, if the SNR is large enough, the spectrums of Capon and MUSIC are approximately the same, and hence their performances may be similar. On the other hand, MUSIC algorithm performs better than Capon algorithm when the separation angle of sources is quite small, and this is why MUSIC (or saying subspace-based methods) is called as high-resolution algorithm.

这个结论要记住,记得这个问题之前找工作被面试官问过。

下面我们会用论文《The Difference Between Capon and MUSIC Algorithm》中的内容论述这个结论,并给出仿真示例。

1、Capon算法原理

Capon是一位科学家的名字,因为他提出了Capon这种算法,是以他的名字来命名的。我们将数据模型考虑为:

x ( t ) = A s ( t ) + n ( t ) \mathbf{x}(t)=\mathbf{A} \mathbf{s}(t)+\mathbf{n}(t) x(t)=As(t)+n(t)(1)

其中,x(t)是观测数据向量,A是阵列信号处理中所谓的导向矩阵,s(t)和n(t)分别代表信号和噪声向量,t表示时间索引。将一个权重向量w放到观察向量x(t)上,我们得到的输出为:

y ( t ) = w H x ( t ) y(t)=\mathbf{w}^H \mathbf{x}(t) y(t)=wHx(t)(2)

因此,阵列输出的功率可以公式化如下:

R y = E { ∣ y ( t ) ∣ 2 } = w H R x w R_y=\mathrm{E}\left\{|y(t)|^2\right\}=\mathbf{w}^H \mathbf{R}_{\mathbf{x}} \mathbf{w} Ry=E{y(t)2}=wHRxw(3)

其中E{·}和·H分别表示数学期望和埃尔米特转置。此外, R x = E { x ( t ) x H ( t ) } \mathbf{R}_{\mathbf{x}}=\mathrm{E}\left\{\mathbf{x}(t) \mathbf{x}^H(t)\right\} Rx=E{x(t)xH(t)} 是观测数据的协方差矩阵。Capon算法[1]可以描述为:最小化输出功率,同时保持视线方向的单位增益,其公式如下:

min ⁡ w w H R x w  subject to  w H a ( θ ) = 1. \begin{aligned} & \min _{\mathbf{w}} \quad \mathbf{w}^H \mathbf{R}_{\mathbf{x}} \mathbf{w} \\ & \text { subject to } \quad \mathbf{w}^H \mathbf{a}(\theta)=1 .\end{aligned} wminwHRxw subject to wHa(θ)=1.

我的理解,这里其实类似于波束形成(本质上就是),保持视线方向的单位增益就是波束形成后的最大增益方向。上述公式可使用拉格朗日乘数法求解,其解为:

w L a g = R x − 1 a ( θ ) a H ( θ ) R x − 1 a ( θ ) \mathbf{w}_{L a g}=\frac{\mathbf{R}_{\mathbf{x}}^{-1} \mathbf{a}(\theta)}{\mathbf{a}^H(\theta) \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{a}(\theta)} wLag=aH(θ)Rx1a(θ)Rx1a(θ)(4)

将上式代入方程(3),可以得到与方向相关的输出功率,如 :

P Capon  ( θ ) = 1 a H ( θ ) R x − 1 a ( θ ) P_{\text {Capon }}(\theta)=\frac{1}{\mathbf{a}^H(\theta) \mathbf{R}_{\mathbf{x}}^{-1} \mathbf{a}(\theta)} PCapon (θ)=aH(θ)Rx1a(θ)1(5)

经过角度搜索,即可得到Capon算法的测角结果。

2、MUSIC算法原理

MUSIC是多重信号分类的英文缩写(MUltiple SIgnal Classification),信号模型如前所述,一旦我们得到观测数据的协方差矩阵Rx,我们就对其进行特征值分解,并获得信号和噪声分量,如下:

R x = U s Σ s U s H + U n Σ n U n H = ∑ σ s u s u s H + ∑ σ n u n u n H \begin{aligned} \mathbf{R}_{\mathbf{x}} & =\mathbf{U}_{\mathbf{s}} \boldsymbol{\Sigma}_{\mathbf{s}} \mathbf{U}_{\mathbf{s}}{ }^H+\mathbf{U}_{\mathbf{n}} \boldsymbol{\Sigma}_{\mathbf{n}} \mathbf{U}_{\mathbf{n}}{ }^H \\ & =\sum \sigma_s \mathbf{u}_{\mathbf{s}} \mathbf{u}_{\mathbf{s}}{ }^H+\sum \sigma_n \mathbf{u}_{\mathbf{n}} \mathbf{u}_{\mathbf{n}}{ }^H\end{aligned} Rx=UsΣsUsH+UnΣnUnH=σsususH+σnununH(6)

根据信号和噪声子空间之间的正交性[2],我们可以如下形成MUSIC空间谱 :

P MUSIC  ( θ ) = 1 a H ( θ ) U n U n H a ( θ ) P_{\text {MUSIC }}(\theta)=\frac{1}{\mathbf{a}^H(\theta) \mathbf{U}_{\mathbf{n}} \mathbf{U}_{\mathbf{n}}{ }^H \mathbf{a}(\theta)} PMUSIC (θ)=aH(θ)UnUnHa(θ)1(7)

3、算法比较与分析

很容易发现方程式(5)中的 R x − 1 R_x^{-1} Rx1 可以写成:

R x − 1 = ( U s Σ s U s H + U n Σ n U n H ) − 1 = U s Σ s − 1 U s H + U n Σ n − 1 U n H = ∑ 1 σ s u s u s H + ∑ 1 σ n u n u n H \begin{aligned} \mathbf{R}_{\mathbf{x}}^{-1} & =\left(\mathbf{U}_{\mathbf{s}} \boldsymbol{\Sigma}_{\mathbf{s}} \mathbf{U}_{\mathbf{s}}{ }^H+\mathbf{U}_{\mathbf{n}} \boldsymbol{\Sigma}_{\mathbf{n}} \mathbf{U}_{\mathbf{n}}{ }^H\right)^{-1} \\ & =\mathbf{U}_{\mathbf{s}} \boldsymbol{\Sigma}_{\mathbf{s}}{ }^{-1} \mathbf{U}_{\mathbf{s}}{ }^H+\mathbf{U}_{\mathbf{n}} \boldsymbol{\Sigma}_{\mathbf{n}}{ }^{-1} \mathbf{U}_{\mathbf{n}}{ }^H \\ & =\sum \frac{1}{\sigma_s} \mathbf{u}_{\mathbf{s}} \mathbf{u}_{\mathbf{s}}{ }^H+\sum \frac{1}{\sigma_n} \mathbf{u}_{\mathbf{n}} \mathbf{u}_{\mathbf{n}}{ }^H\end{aligned} Rx1=(UsΣsUsH+UnΣnUnH)1=UsΣs1UsH+UnΣn1UnH=σs1ususH+σn1ununH

即等于“信号”项+“噪声”项。当SNR足够大,即σs/σn足够大,则噪声项可以被忽略不计。上述公式(5)可以被近似改写为:

P Capon  ( θ ) ≃ 1 a H ( θ ) U n Σ n − 1 U n H a ( θ ) P_{\text {Capon }}(\theta) \simeq \frac{1}{\mathbf{a}^H(\theta) \mathbf{U}_{\mathbf{n}} \boldsymbol{\Sigma}_{\mathbf{n}}{ }^{-\mathbf{1}} \mathbf{U}_{\mathbf{n}}{ }^H \mathbf{a}(\theta)} PCapon (θ)aH(θ)UnΣn1UnHa(θ)1

因为求和符号并不改变频谱, 则存在:

P Capon  ( θ ) ≃ 1 a H ( θ ) U n U n H a ( θ ) = P MUSIC  ( θ ) P_{\text {Capon }}(\theta) \simeq \frac{1}{\mathbf{a}^H(\theta) \mathbf{U}_{\mathbf{n}} \mathbf{U}_{\mathbf{n}}{ }^H \mathbf{a}(\theta)}=P_{\text {MUSIC }}(\theta) PCapon (θ)aH(θ)UnUnHa(θ)1=PMUSIC (θ)

即Caopn算法的性能近似等于MUSIC算法的性能,这是由数学上得到证明的。因此,我们得出的结论是:如果SNR足够大,Capon和MUSIC的频谱大致相同,因此它们的性能可能相似。

两种算法在10°和20°的DOA RMSE与SNR的关系:
【精选论文 | Capon算法与MUSIC算法性能的比较与分析】,自动驾驶中的雷达处理算法,算法,人工智能

两种算法在SNR=10dB时,Capon和MUSIC算法的目标分离角度与DOA RMSE的关系:

【精选论文 | Capon算法与MUSIC算法性能的比较与分析】,自动驾驶中的雷达处理算法,算法,人工智能

4、MATLAB仿真

设置阵元数为10,阵元间隔为半波长,信源数为3(-10度,0度,20度),快拍数为1024,下图为估计得到的信号谱,低信噪比设置为-8dB,高信噪比设置为10dB。

低信噪比:

【精选论文 | Capon算法与MUSIC算法性能的比较与分析】,自动驾驶中的雷达处理算法,算法,人工智能

高信噪比:

【精选论文 | Capon算法与MUSIC算法性能的比较与分析】,自动驾驶中的雷达处理算法,算法,人工智能

从上图可以看出,在信噪比较低时两种估计算法性能都急剧下降,但是MUSIC算法略优于Capon,而当信噪比较大时,两种算法基本一致。MUSIC谱峰只反映阵列流形矢量与噪声子空间的正交性,与信噪比无关;Capon谱峰是真正的输出功率,与信噪比有关,这就是我前面说Capon其实本质上是波束形成。

仿真代码:

%MUSIC ALOGRITHM
%DOA ESTIMATION BY CLASSICAL_MUSIC
% 运行环境:MATLAB2022b
clear all;
%close all;
clc;
source_number=3;%信元数
sensor_number=10;%阵元数
N_x=1024; %信号长度
snapshot_number=N_x;%快拍数
w=[pi/4 pi/6 pi/3].';%信号频率
l=sum(2*pi*3e8./w)/3;%信号波长  
d=0.5*l;%阵元间距
snr=10;%信噪比

source_doa=[-10 0 20];%两个信号的入射角度

A=[exp(-1j*(0:sensor_number-1)*d*2*pi*sin(source_doa(1)*pi/180)/l);exp(-1j*(0:sensor_number-1)*d*2*pi*sin(source_doa(2)*pi/180)/l);exp(-1j*(0:sensor_number-1)*d*2*pi*sin(source_doa(3)*pi/180)/l)].';%阵列流型

s=sqrt(10.^(snr/10))*exp(1j*w*[0:N_x-1]);%仿真信号
%x=awgn(s,snr);
x=A*s+(1/sqrt(2))*(randn(sensor_number,N_x)+1j*randn(sensor_number,N_x));%加了高斯白噪声后的阵列接收信号

R=x*x'/snapshot_number;
iR=inv(R);
%[V,D]=eig(R);
%Un=V(:,1:sensor_number-source_number);
%Gn=Un*Un';
[U,S,V]=svd(R);
Un=U(:,source_number+1:sensor_number);
Gn=Un*Un';

searching_doa=-90:0.1:90;%线阵的搜索范围为-90~90for i=1:length(searching_doa)
   a_theta=exp(-1j*(0:sensor_number-1)'*2*pi*d*sin(pi*searching_doa(i)/180)/l);
   Pmusic(i)=a_theta'*a_theta./abs((a_theta)'*Gn*a_theta);
   Pcapon(i)=1./abs((a_theta)'*iR*a_theta);
 end
plot(searching_doa,10*log10(Pmusic),'k-',searching_doa,10*log10(Pcapon),'b--');
%axis([-90 90 -90 15]);
xlabel('DOAs/degree');
ylabel('Normalized Spectrum/dB');
legend('Music Spectrum','Capon Spectrum');
title('Comparation of MUSIC and Capon for DOA Estimation');
grid on;

5、角度分辨率/精度

设置阵元数为10,阵元间隔为半波长,信源数为3(-0.5°,0°,0.5°),快拍数为1024,信噪比设置为20dB,下图为估计得到的信号谱,为方便观察进行了归一化。

【精选论文 | Capon算法与MUSIC算法性能的比较与分析】,自动驾驶中的雷达处理算法,算法,人工智能

可以看到这种情况下,MUSIC的分辨率是优于Capon法的。具体代码详见https://MLiyPUV6F。文章来源地址https://www.toymoban.com/news/detail-667203.html

到了这里,关于【精选论文 | Capon算法与MUSIC算法性能的比较与分析】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 阵列信号处理_对比常规波束形成法(CBF)和Capon算法

    利用电磁波信号来获取目标或信源相对天线阵列的角度信息的方式,也称测向、波达方向估计(DOA)。主要应用于雷达、通信、电子对抗和侦察等领域。 发展 常规波束形成(CBF)。本质是时域傅里叶变换在空域直接应用,分辨力受限于瑞利限; Capon自适应波束形成(1969年)

    2024年02月03日
    浏览(51)
  • aws上采用tidb和原生使用aws rds价格的比较。兼数据分析性能的测试

    作者: tidb狂热爱好者 原文来源: https://tidb.net/blog/ef242615 有一个20t-30t的历史库需要做数据分析,节能减排,减容增效。今年大环境不好,aws的费用又是出奇的贵。 历史库的作用是公司近1年的订单合集,平时不需要查询,偶尔会有月统计的需求。之前用aws的mysql无法完成需求

    2024年02月13日
    浏览(47)
  • unitary MUSIC 算法

      论文 A Unitary Transformation Method for Angle-of-Arrival Estimation 中提出了 unitary MUSIC 的算法,直译就是酉 MUSIC 算法,即酉变换 MUSIC 算法。该算法的目的是简化计算复杂度,将传统 MUSIC 算法中的复数 SVD 和复数网格搜索计算转化为实数计算。在学习 unitary MUSIC 之前需要理解 Hermiti

    2024年02月20日
    浏览(42)
  • 【学习笔记】【DOA子空间算法】3 root-MUSIC 算法

      root-MUSIC 算法是 MUSIC 算法的一种多项式求根形式,其基本思想是 Pisarenko 分解。相比于 MUSIC 算法,root-MUSIC 算法无须谱峰搜索,降低了复杂度。   由前面可知,ULA 的方向矢量 a ( θ ) mathbf{a}(theta) a ( θ ) 如下: a ( θ ) = [ exp ⁡ ( − j 2 π d 1 sin ⁡ θ / λ ) ⋮ exp ⁡ ( −

    2024年02月12日
    浏览(39)
  • 【学习笔记】【DOA子空间算法】5 SS-MUSIC 算法

      在学习 SS-MUSIC 算法之前需要理解相干信号的概念。首先定义两个平稳信号 s i ( t ) s_i(t) s i ​ ( t ) 和 s k ( t ) s_k(t) s k ​ ( t ) 的相关系数 ρ i k rho_{ik} ρ ik ​ 如下: ρ i k = E [ s i ( t ) s k ∗ ( t ) ] E [ ∣ s i ( t ) ∣ 2 ] E [ ∣ s k ( t ) ∣ 2 ] begin{equation*} rho_{ik} = frac{mathrm{E}

    2024年02月12日
    浏览(61)
  • 图像分析技术大比拼:图像分类、图像识别、目标检测的优缺点分析与算法比较

          计算机视觉是人工智能领域的一个重要分支,它旨在构建能够理解和处理图像、视频等视觉信息的计算机系统。在计算机视觉领域中,图像分类、图像识别和目标检测是三个重要的任务。        一、图像分类       图像分类是计算机视觉领域最基础的任务之一,它

    2024年02月16日
    浏览(51)
  • 【数据挖掘】PCA/LDA/ICA:A成分分析算法比较

            在深入研究和比较算法之前,让我们独立回顾一下它们。请注意,本文的目的不是深入解释每种算法,而是比较它们的目标和结果。 如果您想了解更多关于

    2024年02月15日
    浏览(44)
  • DoA 估计:多重信号分类 MUSIC 算法(附 MATLAB 代码)

    本文首次在公众号【零妖阁】上发表,为了方便阅读和分享,我们将在其他平台进行自动同步。由于不同平台的排版格式可能存在差异,为了避免影响阅读体验,建议如有排版问题,可前往公众号查看原文。感谢您的阅读和支持! DoA 估计 是指根据天线阵列的接收信号估计出

    2024年02月03日
    浏览(50)
  • 论文阅读-面向机器学习的云工作负载预测模型的性能分析

    论文名称: Performance Analysis of Machine Learning Centered Workload Prediction Models for Cloud 由于异构服务类型和动态工作负载的高变异性和维度,资源使用的精确估计是一个复杂而具有挑战性的问题。在过去几年中,资源使用和流量的预测已受到研究界的广泛关注。许多基于机器学习的工

    2024年02月22日
    浏览(43)
  • MUSIC算法相关原理知识(物理解读+数学推导+Matlab代码实现)

    部分来自于网络教程,如有侵权请联系本人删除  教程链接:MUSIC算法的直观解释:1,MUSIC算法的背景和基础知识_哔哩哔哩_bilibili  MUSIC算法的直观解释:2,我对于MUSIC算法的理解_哔哩哔哩_bilibili https://blog.csdn.net/zhangziju/article/details/100730081  一、MUSIC算法作用 MUSIC (Multiple

    2024年02月02日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包