PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路

这篇具有很好参考价值的文章主要介绍了PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路,pytorch

完整代码:

import torch
import torchvision
from PIL import Image
from torch import nn

image_path = "../imgs/dog.png"
image = Image.open(image_path)
print(image)

# 因为png格式是四个通道,除了RGB三通道外,还有一个透明度通道
image = image.convert("RGB")
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)

class MyNN(nn.Module):
    def __init__(self):
        super(MyNN, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

model = torch.load("mynn_0.pth")
print(model)

image = torch.reshape(image,(1,3,32,32))
model.eval()

with torch.no_grad():
    output = model(image.cuda())
print(output)
print(output.argmax(1))

 采用GPU训练的模型,两种方法

(1)在CPU上加载,要从GPU映射到CPU,即把model = torch.load("mynn_9.pth")改为:

model = torch.load("mynn_9.pth",map_location=torch.device('cpu'))

(2)将image转到GPU中,即把output = model(image)改为:

output = model(image.cuda())

 文章来源地址https://www.toymoban.com/news/detail-667290.html

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路,pytorch

 预测错误的原因可能是训练次数不够多

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路,pytorch 改成:

model = torch.load("mynn_9.pth")

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路,pytorch

 

PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路,pytorch

 PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路,pytorch

 

 

到了这里,关于PyTorch学习笔记(十七)——完整的模型验证(测试,demo)套路的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度强化学习】(1) DQN 模型解析,附Pytorch完整代码

    大家好,今天和各位讲解一下深度强化学习中的基础模型 DQN,配合 OpenAI 的 gym 环境,训练模型完成一个小游戏,完整代码可以从我的 GitHub 中获得: https://github.com/LiSir-HIT/Reinforcement-Learning/tree/main/Model DQN(Deep Q Network) 算法由 DeepMind 团队提出,是深度神经网络和 Q-Learning 算

    2023年04月08日
    浏览(42)
  • 【深度强化学习】(2) Double DQN 模型解析,附Pytorch完整代码

    大家好,今天和大家分享一个深度强化学习算法 DQN 的改进版 Double DQN,并基于 OpenAI 的 gym 环境库完成一个小游戏,完整代码可以从我的 GitHub 中获得: https://github.com/LiSir-HIT/Reinforcement-Learning/tree/main/Model DQN 算法的原理是指导机器人不断与环境交互,理解最佳的行为方式,最

    2024年02月03日
    浏览(43)
  • pytorch实战-图像分类(二)(模型训练及验证)(基于迁移学习(理解+代码))

    目录 1.迁移学习概念 2.数据预处理  3.训练模型(基于迁移学习) 3.1选择网络,这里用resnet 3.2如果用GPU训练,需要加入以下代码 3.3卷积层冻结模块 3.4加载resnet152模 3.5解释initialize_model函数 3.6迁移学习网络搭建 3.7优化器 3.8训练模块(可以理解为主函数) 3.9开始训练 3.10微调

    2024年02月14日
    浏览(47)
  • 【深度强化学习】(4) Actor-Critic 模型解析,附Pytorch完整代码

    大家好,今天和各位分享一下深度强化学习中的 Actor-Critic 演员评论家算法, Actor-Critic 算法是一种综合了策略迭代和价值迭代的集成算法 。我将使用该模型结合 OpenAI 中的 Gym 环境完成一个小游戏,完整代码可以从我的 GitHub 中获得: https://github.com/LiSir-HIT/Reinforcement-Learning

    2024年02月03日
    浏览(48)
  • 机器人动力学与控制学习笔记(十七)——基于名义模型的机器人滑模控制

            滑模运动包括趋近运动和滑模运动两个过程。系统从任意初始状态趋向切换面,直到到达切换面的运动称为趋近运动,即趋近运动为的过程。根据滑模变结构原理,滑模可达性条件仅保证由状态空间任意位置运动点在有限时间内到达切换面的要求,而对于趋近运动的

    2024年02月12日
    浏览(44)
  • Pytorch学习笔记(模型训练)

    在同一个包下创建 train.py 和 model.py ,按照步骤先从数据处理,模型架构搭建,训练测试,统计损失,如下面代码所示 train.py model.py 运行 train.py 后可以通过启动tensorboard进行查看我们的loss情况,损失是不断下降的。 补充 argmax 函数的使用 我们模型预测处理的是概率,我们需

    2024年02月07日
    浏览(44)
  • 土堆学习笔记——P28完整的模型训练套路(二)

    怎么知道模型有没有训练好?有没有达到想要的需求? 解决方法:在每轮训练之后加一个测试,在测试数据集上看效果(看损失之类的)。 注意:在测试时候不调优,仅为看效果。 还可以用tensorboard可视化损失 截图最后一行没写完[false, true].sum()=1 这个值/个数 Argmax使用 Ar

    2024年01月17日
    浏览(38)
  • PyTorch学习笔记(十三)——现有网络模型的使用及修改

     以分类模型的VGG为例   设置为 False 的情况,相当于网络模型中的参数都是初始化的、默认的 设置为 True 时,网络模型中的参数在数据集上是训练好的,能达到比较好的效果 CIFAR10 把数据分成了10类,而 vgg16 模型把数据分成了 1000 类,如何应用这个网络模型呢? 方法1:把最

    2024年02月12日
    浏览(40)
  • Pytorch图像分类模型转ONNX(同济子豪兄学习笔记)

    安装配置环境 代码运行云GPU平台:公众号 人工智能小技巧 回复 gpu 同济子豪兄 2022-8-22 2023-4-28 2023-5-8 安装 Pytorch 安装 ONNX 安装推理引擎 ONNX Runtime 安装其它第三方工具包 验证安装配置成功 Pytorch图像分类模型转ONNX-ImageNet1000类 把Pytorch预训练ImageNet图像分类模型,导出为ONNX格

    2024年02月09日
    浏览(47)
  • 机器学习笔记 - PyTorch Image Models图像模型概览 (timm)

            PyTorch Image Models (timm)是一个用于最先进的图像分类的库,包含图像模型、优化器、调度器、增强等的集合;是比较热门的论文及代码库。         虽然越来越多的低代码和无代码解决方案可以轻松开始将深度学习应用于计算机视觉问题,但我们经常与希望寻求

    2024年02月12日
    浏览(34)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包