fastdeploy部署多线程/进程paddle ocr(python flask框架 )

这篇具有很好参考价值的文章主要介绍了fastdeploy部署多线程/进程paddle ocr(python flask框架 )。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

部署参考:https://github.com/PaddlePaddle/FastDeploy/blob/develop/tutorials/multi_thread/python/pipeline/README_CN.md

安装
cpu: pip install fastdeploy-python

gpu :pip install fastdeploy-gpu-python

#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd  FastDeploy/tutorials/multi_thread/python/pipeline

# 下载模型,图片和字典文件
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar xvf ch_PP-OCRv3_det_infer.tar

wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar

wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar xvf ch_PP-OCRv3_rec_infer.tar

wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg

wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt

命令:
多线程

python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path xxx/xxx --device gpu --thread_num 3

多进程

python multi_thread_process_ocr.py --det_model ch_PP-OCRv3_det_infer --cls_model ch_ppocr_mobile_v2.0_cls_infer --rec_model ch_PP-OCRv3_rec_infer --rec_label_file ppocr_keys_v1.txt --image_path xxx/xxx --device gpu --use_multi_process True --process_num 3

问题

多进程图片分配有bug

文件:multi_thread_process_ocr.py
原始代码:270行
fastdeploy部署多线程/进程paddle ocr(python flask框架 ),python,paddle,ocr

修改为如下,去掉1
fastdeploy部署多线程/进程paddle ocr(python flask框架 ),python,paddle,ocr

ModuleNotFoundError: No module named ‘example’

因为安装包不对,fastdeploy与fastdeploy-python不是同一个包

CUDA error(3), initialization error.

  ----------------------
  Error Message Summary:
  ----------------------
  ExternalError: CUDA error(3), initialization error. 
    [Hint: Please search for the error code(3) on website (https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g3f51e3575c2178246db0a94a430e0038) to get Nvidia's official solution and advice about CUDA Error.] (at /home/fastdeploy/develop/paddle_build/v0.0.0/Paddle/paddle/phi/backends/gpu/cuda/cuda_info.cc:251)

参考:
PaddlePaddle——问题解决:使用Python multiprocessing时报错:CUDA error(3), initialization error.
https://github.com/PaddlePaddle/PaddleDetection/issues/2241
paddle 相关模块只在方法里面引用,要在多进程外有 import 这些模块

flask部署

发送列表类型的图片base64编码,返回列表类型的字符串

注意server端文件放在FastDeploy/tutorials/multi_thread/python/pipeline目录下
创建server端

from threading import Thread

import cv2
import os
from multiprocessing import Pool
import sys
 
import fastdeploy as fd
import numpy as np
import base64
from PIL import Image
from io import BytesIO
from sqlalchemy import create_engine, text

from flask import Flask, request, jsonify
import argparse
import ast
 
# watch -n 0.1 nvidia-smi

def parse_arguments():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--det_model",
        # required=True,
        type=str,
        default='ch_PP-OCRv3_det_infer',
        help="Path of Detection model of PPOCR.")
    parser.add_argument(
        "--cls_model",
        # required=True,
        type=str,
        default='ch_ppocr_mobile_v2.0_cls_infer',
        help="Path of Classification model of PPOCR.")
    parser.add_argument(
        "--rec_model",
        # required=True,
        type=str,
        default='ch_PP-OCRv3_rec_infer',
        help="Path of Recognization model of PPOCR.")
    parser.add_argument(
        "--rec_label_file",
        # required=True,
        type=str,
        default='ppocr_keys_v1.txt',
        help="Path of Recognization model of PPOCR.")
    # parser.add_argument(
    #     "--image_path",
    #     type=str,
    #     required=True,
    #     help="The directory or path or file list of the images to be predicted."
    # )
    parser.add_argument(
        "--device",
        type=str,
        default='gpu', # cpu
        help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.")
    parser.add_argument(
        "--backend",
        type=str,
        default="default",
        help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu"
    )
    parser.add_argument(
        "--device_id",
        type=int,
        default=0,
        help="Define which GPU card used to run model.")
    parser.add_argument(
        "--cpu_thread_num",
        type=int,
        default=9,
        help="Number of threads while inference on CPU.")
    parser.add_argument(
        "--cls_bs",
        type=int,
        default=1,
        help="Classification model inference batch size.")
    parser.add_argument(
        "--rec_bs",
        type=int,
        default=6,
        help="Recognition model inference batch size")
    parser.add_argument("--thread_num", type=int, default=1, help="thread num")
    parser.add_argument(
        "--use_multi_process",
        type=ast.literal_eval,
        default=True,
        help="Wether to use multi process.")
    parser.add_argument(
        "--process_num", type=int, default=5, help="process num")
    return parser.parse_args()


def get_image_list(image_path):
    image_list = []
    if os.path.isfile(image_path):
        image_list.append(image_path)
    # load image in a directory
    elif os.path.isdir(image_path):
        for root, dirs, files in os.walk(image_path):
            for f in files:
                image_list.append(os.path.join(root, f))
    else:
        raise FileNotFoundError(
            '{} is not found. it should be a path of image, or a directory including images.'.
            format(image_path))

    if len(image_list) == 0:
        raise RuntimeError(
            'There are not image file in `--image_path`={}'.format(image_path))

    return image_list


def build_option(args):
    option = fd.RuntimeOption()
    if args.device.lower() == "gpu":
        option.use_gpu(args.device_id)

    option.set_cpu_thread_num(args.cpu_thread_num)

    if args.device.lower() == "kunlunxin":
        option.use_kunlunxin()
        return option

    if args.backend.lower() == "trt":
        assert args.device.lower(
        ) == "gpu", "TensorRT backend require inference on device GPU."
        option.use_trt_backend()
    elif args.backend.lower() == "pptrt":
        assert args.device.lower(
        ) == "gpu", "Paddle-TensorRT backend require inference on device GPU."
        option.use_trt_backend()
        option.enable_paddle_trt_collect_shape()
        option.enable_paddle_to_trt()
    elif args.backend.lower() == "ort":
        option.use_ort_backend()
    elif args.backend.lower() == "paddle":
        option.use_paddle_infer_backend()
    elif args.backend.lower() == "openvino":
        assert args.device.lower(
        ) == "cpu", "OpenVINO backend require inference on device CPU."
        option.use_openvino_backend()
    return option


def load_model(args, runtime_option):
    # Detection模型, 检测文字框
    det_model_file = os.path.join(args.det_model, "inference.pdmodel")
    det_params_file = os.path.join(args.det_model, "inference.pdiparams")
    # Classification模型,方向分类,可选
    cls_model_file = os.path.join(args.cls_model, "inference.pdmodel")
    cls_params_file = os.path.join(args.cls_model, "inference.pdiparams")
    # Recognition模型,文字识别模型
    rec_model_file = os.path.join(args.rec_model, "inference.pdmodel")
    rec_params_file = os.path.join(args.rec_model, "inference.pdiparams")
    rec_label_file = args.rec_label_file

    # PPOCR的cls和rec模型现在已经支持推理一个Batch的数据
    # 定义下面两个变量后, 可用于设置trt输入shape, 并在PPOCR模型初始化后, 完成Batch推理设置
    cls_batch_size = 1
    rec_batch_size = 6

    # 当使用TRT时,分别给三个模型的runtime设置动态shape,并完成模型的创建.
    # 注意: 需要在检测模型创建完成后,再设置分类模型的动态输入并创建分类模型, 识别模型同理.
    # 如果用户想要自己改动检测模型的输入shape, 我们建议用户把检测模型的长和高设置为32的倍数.
    det_option = runtime_option
    det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640],
                                   [1, 3, 960, 960])
    # 用户可以把TRT引擎文件保存至本地
    #det_option.set_trt_cache_file(args.det_model  + "/det_trt_cache.trt")
    global det_model
    det_model = fd.vision.ocr.DBDetector(
        det_model_file, det_params_file, runtime_option=det_option)

    cls_option = runtime_option
    cls_option.set_trt_input_shape("x", [1, 3, 48, 10],
                                   [cls_batch_size, 3, 48, 320],
                                   [cls_batch_size, 3, 48, 1024])
    # 用户可以把TRT引擎文件保存至本地
    # cls_option.set_trt_cache_file(args.cls_model  + "/cls_trt_cache.trt")
    global cls_model
    cls_model = fd.vision.ocr.Classifier(
        cls_model_file, cls_params_file, runtime_option=cls_option)

    rec_option = runtime_option
    rec_option.set_trt_input_shape("x", [1, 3, 48, 10],
                                   [rec_batch_size, 3, 48, 320],
                                   [rec_batch_size, 3, 48, 2304])
    # 用户可以把TRT引擎文件保存至本地
    #rec_option.set_trt_cache_file(args.rec_model  + "/rec_trt_cache.trt")
    global rec_model
    rec_model = fd.vision.ocr.Recognizer(
        rec_model_file,
        rec_params_file,
        rec_label_file,
        runtime_option=rec_option)

    # 创建PP-OCR,串联3个模型,其中cls_model可选,如无需求,可设置为None
    global ppocr_v3
    ppocr_v3 = fd.vision.ocr.PPOCRv3(
        det_model=det_model, cls_model=cls_model, rec_model=rec_model)

    # 给cls和rec模型设置推理时的batch size
    # 此值能为-1, 和1到正无穷
    # 当此值为-1时, cls和rec模型的batch size将默认和det模型检测出的框的数量相同
    ppocr_v3.cls_batch_size = cls_batch_size
    ppocr_v3.rec_batch_size = rec_batch_size


def predict(model, img_list):
    result_list = []
    # predict ppocr result
    for image in img_list:
        im = cv2.imread(image)
        result = model.predict(im)
        result_list.append(result)
    return result_list

def process_predict(image):
    # predict ppocr result
    im = cv2.imread(image)
    result = ppocr_v3.predict(im)
    print(result)


def process_predict_text(base64_str):
    image = base64_to_bgr(base64_str)
    result = ppocr_v3.predict(image)
    # print(result)
    return ''.join(result.text) #不能直接返回OCR对象序列化会失败

def cv_show(img):
    '''
    展示图片
    @param img:
    @param name:
    @return:
    '''
    cv2.namedWindow('name', cv2.WINDOW_KEEPRATIO)  # cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO
    cv2.imshow('name', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


def base64_to_bgr(base64_str):
    base64_hex = base64.b64decode(base64_str)
    image = BytesIO(base64_hex)
    img = Image.open(image)

    if img.mode=='RGBA':
        width = img.width
        height = img.height
        img2 = Image.new('RGB', size=(width, height), color=(255, 255, 255))
        img2.paste(img, (0, 0), mask=img)
        image_array = np.array(img2)
    else:
        image_array = np.array(img)
    image = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)
    return image



class WrapperThread(Thread):
    def __init__(self, func, args):
        super(WrapperThread, self).__init__()
        self.func = func
        self.args = args
        # self.result = self.func(*self.args)

    def run(self):
        self.result = self.func(*self.args)

    def get_result(self):
        return self.result

def ocr_image_list(imgs_list):
    args = parse_arguments()

    # 对于三个模型,均采用同样的部署配置
    # 用户也可根据自行需求分别配置
    runtime_option = build_option(args)

    if args.use_multi_process:
        process_num = args.process_num
        with Pool(
                process_num,
                initializer=load_model,
                initargs=(args, runtime_option)) as pool:
            #
            results = pool.map(process_predict_text, imgs_list)
            # pool.map(process_predict, imgs_list)
            # 进一步处理结果
            for i, result in enumerate(results):
                print(i, result)
    else:
        load_model(args, runtime_option)
        threads = []
        thread_num = args.thread_num
        image_num_each_thread = int(len(imgs_list) / thread_num)
        # unless you want independent model in each thread, actually model.clone()
        # is the same as model when creating thead because of the existence of
        # GIL(Global Interpreter Lock) in python. In addition, model.clone() will consume
        # additional memory to store independent member variables
        for i in range(thread_num):
            if i == thread_num - 1:
                t = WrapperThread(
                    predict,
                    args=(ppocr_v3.clone(),
                          imgs_list[i * image_num_each_thread:]))
            else:
                t = WrapperThread(
                    predict,
                    args=(ppocr_v3.clone(),
                          imgs_list[i * image_num_each_thread:(i + 1) *
                                                              image_num_each_thread]))  # - 1
            threads.append(t)
            t.start()

        for i in range(thread_num):
            threads[i].join()

        for i in range(thread_num):
            for result in threads[i].get_result():
                print('thread:', i, ', result: ', result)


@app.route('/ocr/submit', methods=['POST'])
def ocr():
    args = parse_arguments()
    process_num = 1#args.process_num
    runtime_option = build_option(args)
    data = request.get_json()

    # 获取 Base64 数据
    base64_str = data['img_base64']

    with Pool(
        process_num, initializer=load_model, initargs=(args, runtime_option)) as pool:
            results = pool.map(process_predict_text, base64_str)
    # 返回响应
    response = {'message': 'Data received', 'result': results}
    return jsonify(response)

import json
import pandas as pd
import time

if __name__ == '__main__':
    app.run(host='192.168.xxx.xxx', port=5000)
    

client 端文章来源地址https://www.toymoban.com/news/detail-667665.html

import base64
import sys

import requests
import json
# 读取图像文件
with open('./pic/img.png', 'rb') as image_file:
    # 将图像文件内容读取为字节流
    image_data = image_file.read()

# 将图像字节流进行 Base64 编码
img_base64 = base64.b64encode(image_data)
 
data = {
    'img_base64': [img_base64.decode('utf-8')] 
   
}


headers = {
    'Content-Type': 'application/json'
}

 
response = requests.post("http://192.168.xxx.xxx:5000/ocr/submit",  data=json.dumps(data),headers = headers)

if response.status_code == 200:
    result = response.json()
    print(result['result'])
else:
    print('Error:', response.status_code)

到了这里,关于fastdeploy部署多线程/进程paddle ocr(python flask框架 )的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Paddle OCR 安装使用教程

    PaddleOCR是飞浆开源文字识别模型,最新开源的超轻量PP-OCRv3模型大小仅为16.2M。同时支持中英文识别;支持倾斜、竖排等多种方向文字识别;支持GPU、CPU预测,并且支持使用paddle开源组件训练自己的超轻量模型,对于垂直领域的需求有很大帮助。 环境安装 说明:官方推荐使用

    2024年02月15日
    浏览(41)
  • Ubuntu20.04 交叉编译Paddle-OCR

    参考链接: https://blog.csdn.net/sz76211822/article/details/130466597?spm=1001.2014.3001.5501 参考链接: https://blog.csdn.net/sz76211822/article/details/130461683?spm=1001.2014.3001.5501 1.将Paddle-Lite编译好的cxx文件夹放置到PaddleOCR/deploy/lite目录下 2.将编译好的opencv文件夹放置到cxx目录下 3.除了拷贝过来的源代码

    2024年02月02日
    浏览(51)
  • 计算机视觉---flask框架封装目标检测,应用线程提高程序运行效率

    1.前言 上一篇文章flask部署 目标检测算法中讲到可以将检测算法封装到flask框架中进行web端展示,但在实际应用中发现一些问题并进行了解决,在本文中进行补充。 2.利用线程,提高flask程序运行效率 flask web端访问时,每次都会从头加载程序,导致每次访问页面刷新率很低或

    2024年02月16日
    浏览(48)
  • FastDeploy:PaddleSeg C++部署方式(一)

    目录 1.FastDeploy介绍 2. 通过FastDeploy C++ 部署PaddleSeg模型 ⚡️FastDeploy 是一款 全场景 、 易用灵活 、 极致高效 的AI推理部署工具, 支持 云边端 部署。提供超过 🔥160+  Text , Vision ,  Speech 和 跨模态 模型📦 开箱即用 的部署体验,并实现🔚 端到端 的推理性能优化,满足开

    2023年04月16日
    浏览(34)
  • fastdeploy快速部署yolov5离线模型

    本篇主要是介绍了yolov5模型的快速部署,使用过yolov5训练过的兄弟都知道,训练完之后,无论你的模型是如何导出的,最后想要使用导出的模型,可能还脱离不了yolov5框架,因为,在使用导出的模型前,yolov5对输入层和输出层都做了较多的图像处理,导致,最后要么是调用

    2024年02月09日
    浏览(43)
  • 深度学习模型部署——Flask框架轻量级部署+阿里云服务器

    ​因为参加一个比赛,需要把训练好的深度学习模型部署到web端,第一次做,在网上也搜索了很多教程,基本上没有适合自己的,只有一个b站up主讲的还不错 https://www.bilibili.com/video/BV1Qv41117SR/?spm_id_from=333.999.0.0vd_source=6ca6a313467efae52a28428a64104c10 https://www.bilibili.com/video/BV1Qv41117

    2024年02月07日
    浏览(82)
  • 67、C#调用Visual Studio 2019生成的Paddle+OCR(使用ncnn库),去完成业务任务

    基本思想:这里使用飞哥写的android代码,将其取出纯c++代码逻辑,自己尝试转了paddle+ocr模型,可以成功转换,不在详细阐述生成ncnn模型的过程和写后处理ocr识别过程,这里要实现的目的是使用c#调用ncnn的ocr工程,完成对应部门的业务支撑~ 一、在window10+ncnn+clion+mingw32测试结

    2024年02月09日
    浏览(59)
  • FastDeploy的方式在OK3588上部署yolov7-- C++

    ⚡️FastDeploy是一款全场景、易用灵活、极致高效的AI推理部署工具, 支持云边端部署。提供超过 🔥160+ Text,Vision, Speech和跨模态模型📦开箱即用的部署体验,并实现🔚端到端的推理性能优化。包括 物体检测、字符识别(OCR)、人脸、人像扣图、多目标跟踪系统、NLP、St

    2024年02月14日
    浏览(44)
  • Python爬虫:单线程、多线程、多进程

    在使用爬虫爬取数据的时候,当需要爬取的数据量比较大,且急需很快获取到数据的时候,可以考虑将单线程的爬虫写成多线程的爬虫。下面来学习一些它的基础知识和代码编写方法。 进程可以理解为是正在运行的程序的实例。进程是拥有资源的独立单位,而线程不是独立的

    2024年02月13日
    浏览(41)
  • 轻量级web开发框架:Flask本地部署及实现公网访问界面

    本篇文章讲解如何在本地安装Flask,以及如何将其web界面发布到公网上并进行远程访问。 Flask是目前十分流行的web框架,采用Python编程语言来实现相关功能。较其他同类型框架更为灵活、轻便、安全且容易上手。它可以很好地结合MVC模式进行开发,开发人员分工合作,小型团

    2024年02月05日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包