第2章 矩阵及其运算
2.1 线性方程组和矩阵
n
\bm{n}
n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
b
2
⋯
⋯
⋯
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
=
b
m
\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \\ \end{cases} \\
⎩
⎨
⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋯⋯⋯⋯am1x1+am2x2+⋯+amnxn=bm
当常数项
b
i
b_{i}
bi 不全为零时,称该方程组为n 元非齐次线性方程组,当
b
i
b_{i}
bi 全为零时,称该方程组为n 元齐次线性方程组。
矩阵 由
m
×
n
m \times n
m×n 个数
a
i
j
a_{ij}
aij 排成的 m 行 n 列的数表
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
\begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{matrix} \\
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
称为
m
×
n
m \times n
m×n矩阵,记作
A
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
)
\bm{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} \\
A=
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
特别地,当 m = n 时,该矩阵叫做n 阶方阵。
增广矩阵 对于非齐次线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
b
2
⋯
⋯
⋯
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
=
b
m
\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \\ \end{cases} \\
⎩
⎨
⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2⋯⋯⋯⋯am1x1+am2x2+⋯+amnxn=bm
它的系数矩阵、未知数矩阵和常数项矩阵分别如下:
A
=
(
a
i
j
)
m
×
n
x
=
(
x
1
x
2
⋯
x
n
)
b
=
(
b
1
b
2
⋯
b
m
)
\begin{align} &\bm{A} = (a_{ij})_{m \times n} \\ &\bm{x} = \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{n} \\ \end{pmatrix} \\ &\bm{b} = \begin{pmatrix} b_{1} & b_{2} & \cdots & b_{m} \\ \end{pmatrix} \\ \end{align} \\
A=(aij)m×nx=(x1x2⋯xn)b=(b1b2⋯bm)
它的增广矩阵定义为
B
=
(
A
b
)
=
(
a
11
a
12
⋯
a
1
n
b
1
a
21
a
22
⋯
a
2
n
b
2
⋮
⋮
⋱
⋮
⋮
a
m
1
a
m
2
⋯
a
m
n
b
m
)
\bm{B} = ( \begin{array}{c|c} \bm{A} & \bm{b} \end{array} ) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m} \\ \end{pmatrix} \\
B=(Ab)=
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amnb1b2⋮bm
对角矩阵 方阵
(
λ
1
λ
2
⋱
λ
n
)
\begin{pmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \\ \end{pmatrix} \\
λ1λ2⋱λn
叫做对角矩阵,简称对角阵,记作
d
i
a
g
(
λ
1
λ
2
⋯
λ
n
)
\mathrm{diag}(\begin{array}{ccc} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \end{array})
diag(λ1λ2⋯λn) .
单位矩阵 对角矩阵 d i a g ( 1 1 ⋯ 1 ) \mathrm{diag}(\begin{array}{ccc} 1 & 1 & \cdots & 1 \end{array}) diag(11⋯1) 叫做 n 阶单位矩阵,简称单位阵,记作 E n \bm{E}_{n} En .
2.2 矩阵的运算
矩阵加法
A
+
B
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
)
+
(
b
11
b
12
⋯
b
1
n
b
21
b
22
⋯
b
2
n
⋮
⋮
⋱
⋮
b
m
1
b
m
2
⋯
b
m
n
)
=
(
a
11
+
b
11
a
12
+
b
12
⋯
a
1
n
+
b
1
n
a
21
+
b
21
a
22
+
b
22
⋯
a
2
n
+
b
2
n
⋮
⋮
⋱
⋮
a
m
1
+
b
m
1
a
m
2
+
b
m
2
⋯
a
m
n
+
b
m
n
)
\begin{align} \bm{A} + \bm{B} &= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{pmatrix} \\ &= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\ \end{pmatrix} \\ \end{align} \\
A+B=
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
+
b11b21⋮bm1b12b22⋮bm2⋯⋯⋱⋯b1nb2n⋮bmn
=
a11+b11a21+b21⋮am1+bm1a12+b12a22+b22⋮am2+bm2⋯⋯⋱⋯a1n+b1na2n+b2n⋮amn+bmn
矩阵加法满足:
A
+
B
=
B
+
A
(
A
+
B
)
+
C
=
A
+
(
B
+
C
)
\bm{A} + \bm{B} = \bm{B} + \bm{A} (\bm{A} + \bm{B}) + \bm{C} = \bm{A} + (\bm{B} + \bm{C})
A+B=B+A(A+B)+C=A+(B+C)
矩阵数乘
c
A
=
c
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
m
1
a
m
2
⋯
a
m
n
)
=
(
c
a
11
c
a
12
⋯
c
a
1
n
c
a
21
c
a
22
⋯
c
a
2
n
⋮
⋮
⋱
⋮
c
a
m
1
c
a
m
2
⋯
c
a
m
n
)
\begin{align} c\bm{A} &= c \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} \\ &= \begin{pmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \\ \end{pmatrix} \\ \end{align} \\
cA=c
a11a21⋮am1a12a22⋮am2⋯⋯⋱⋯a1na2n⋮amn
=
ca11ca21⋮cam1ca12ca22⋮cam2⋯⋯⋱⋯ca1nca2n⋮camn
矩阵数乘满足:
c
A
=
A
c
(
λ
μ
)
A
=
λ
(
μ
A
)
(
λ
+
μ
)
A
=
λ
A
+
μ
A
λ
(
A
+
B
)
=
λ
A
+
λ
B
c\bm{A} = \bm{A}c (\lambda\mu)\bm{A} = \lambda(\mu\bm{A}) (\lambda + \mu)\bm{A} = \lambda\bm{A} + \mu\bm{A} \lambda(\bm{A} + \bm{B})=\lambda\bm{A} + \lambda\bm{B}
cA=Ac(λμ)A=λ(μA)(λ+μ)A=λA+μAλ(A+B)=λA+λB
矩阵乘法 对于
m
×
s
m \times s
m×s矩阵
A
\bm{A}
A 和
s
×
n
s \times n
s×n矩阵
B
\bm{B}
B ,它们的乘法定义为
C
=
A
B
=
(
c
i
j
)
m
×
n
\bm{C} = \bm{A}\bm{B} = (c_{ij})_{m \times n}
C=AB=(cij)m×n ,且满足
c
i
j
=
∑
k
=
1
s
a
i
k
b
k
j
(
i
∈
Z
≤
m
,
j
∈
Z
≤
n
)
c_{ij} = \sum_{k = 1}^{s}a_{ik}b_{kj} ~~~~ (i \in \mathbb{Z} \leq m, j \in \mathbb{Z} \leq n) \\
cij=k=1∑saikbkj (i∈Z≤m,j∈Z≤n)
矩阵乘法满足:
(
A
B
)
C
=
A
(
B
C
)
c
(
A
B
)
=
(
c
A
)
B
=
A
(
c
B
)
A
(
B
+
C
)
=
A
B
+
A
C
(
B
+
C
)
A
=
B
A
+
C
A
(\bm{A}\bm{B})\bm{C} = \bm{A}(\bm{B}\bm{C}) c(\bm{A}\bm{B}) = (c\bm{A})\bm{B} = \bm{A}(c\bm{B}) \bm{A}(\bm{B} + \bm{C}) = \bm{A}\bm{B} + \bm{A}\bm{C} (\bm{B} + \bm{C})\bm{A} = \bm{B}\bm{A} + \bm{C}\bm{A}
(AB)C=A(BC)c(AB)=(cA)B=A(cB)A(B+C)=AB+AC(B+C)A=BA+CA
需要注意的是,
A
B
≠
B
A
(
B
≠
E
)
.
\bm{A}\bm{B} \ne \bm{B}\bm{A} ~~~~ (\bm{B} \ne \bm{E}) .
AB=BA (B=E).
矩阵转置 矩阵
A
=
(
a
i
j
)
m
×
n
\bm{A} = (a_{ij})_{m \times n}
A=(aij)m×n的转置矩阵记作
A
T
\bm{A}^\mathrm{T}
AT ,且满足
A
T
=
(
a
j
i
)
n
×
m
\bm{A}^\mathrm{T} = (a_{ji})_{n \times m} \\
AT=(aji)n×m
矩阵转置满足:
(
A
T
)
T
=
A
(
A
+
B
)
T
=
A
T
+
B
T
(
λ
A
)
T
=
λ
A
T
(
A
B
)
T
=
B
T
A
T
(\bm{A}^{T})^{T} = \bm{A} (\bm{A} + \bm{B})^\mathrm{T} = \bm{A}^\mathrm{T} + \bm{B}^\mathrm{T} (\lambda \bm{A})^\mathrm{T} = \lambda\bm{A}^\mathrm{T} (\bm{A}\bm{B})^\mathrm{T} =\bm{B}^\mathrm{T}\bm{A}^\mathrm{T}
(AT)T=A(A+B)T=AT+BT(λA)T=λAT(AB)T=BTAT
方阵的行列式 由 n 阶方阵
A
\bm{A}
A的元素所构成的行列式,称为方阵
A
\pmb{A}
A 的行列式,记作
det
A
\det\bm{A}
detA或
∣
A
∣
| \bm{A} |
∣A∣
方阵的行列式满足:
∣
A
T
∣
=
∣
A
∣
∣
λ
A
∣
=
λ
n
∣
A
∣
| \bm{A}^\mathrm{T} | = | \bm{A} | | \lambda\bm{A} | = \lambda^{n} | \bm{A} |
∣AT∣=∣A∣∣λA∣=λn∣A∣
其中 n 为矩阵
A
\bm{A}
A的阶数
∣
A
B
∣
=
∣
A
∣
∣
B
∣
| \pmb{A}\bm{B} | = | \pmb{A} || \bm{B} |
∣AB∣=∣A∣∣B∣
2.3 逆矩阵
伴随矩阵 行列式 | \bm{A} | 的各个元素的代数余子式 A_{ij} 所构成的如下的矩阵
A
∗
=
(
A
11
A
21
⋯
A
n
1
A
12
A
22
⋯
A
n
2
⋮
⋮
⋱
⋮
A
1
n
A
2
n
⋯
A
n
n
)
\bm{A}^{*} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \\ \end{pmatrix} \\
A∗=
A11A12⋮A1nA21A22⋮A2n⋯⋯⋱⋯An1An2⋮Ann
称为矩阵
A
\bm{A}
A的伴随矩阵,简称伴随阵,记作
A
∗
\bm{A}^{*}
A∗
矩阵
A
\bm{A}
A和它的伴随矩阵
A
∗
\bm{A}^{*}
A∗ 满足
A
A
∗
=
A
∗
A
=
∣
A
∣
E
\bm{A}\bm{A}^{*}=\bm{A}^{*}\bm{A}=|\bm{A}|\bm{E} \\
AA∗=A∗A=∣A∣E
逆矩阵 对于 n 阶矩阵
A
\bm{A}
A,如果有一个 n 阶矩阵
B
\bm{B}
B ,使得
A
B
=
B
A
=
E
\bm{A}\bm{B} = \bm{B}\bm{A} = \bm{E} \\
AB=BA=E
则说矩阵
A
\bm{A}
A是可逆的,并把矩阵
B
\bm{B}
B称为矩阵
A
\bm{A}
A的逆矩阵,简称逆阵,记作
A
−
1
\bm{A}^{-1}
A−1.
如果矩阵 A \bm{A} A是可逆的,那么 A \bm{A} A 的逆矩阵是惟一的。
矩阵
A
\bm{A}
A 可逆的充分必要条件是
∣
A
∣
≠
0
| \bm{A} | \ne 0
∣A∣=0 。若
∣
A
∣
≠
0
| \bm{A} | \ne 0
∣A∣=0,则
A
−
1
=
1
∣
A
∣
A
∗
\bm{A}^{-1} = \frac{1}{| \bm{A} |}\bm{A}^{*} \\
A−1=∣A∣1A∗
逆矩阵满足:
(
A
−
1
)
−
1
=
A
(
λ
A
)
−
1
=
λ
−
1
A
−
1
(\bm{A}^{-1})^{-1} = \bm{A} (\lambda \bm{A})^{-1} = \lambda^{-1}\bm{A}^{-1}
(A−1)−1=A(λA)−1=λ−1A−1
若
A
\bm{A}
A、
B
\bm{B}
B 为同阶矩阵且均可逆,则
(
A
B
)
−
1
=
B
−
1
A
−
1
(\bm{A}\bm{B})^{-1} = \bm{B}^{-1}\bm{A}^{-1}
(AB)−1=B−1A−1
奇异矩阵 不可逆矩阵叫做奇异矩阵。
非奇异矩阵 可逆矩阵叫做非奇异矩阵。文章来源:https://www.toymoban.com/news/detail-668156.html
2.4 Cramer法则
Cramer法则 如果线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
=
b
1
a
21
x
1
+
a
22
x
2
+
⋯
=
b
2
⋯
⋯
⋯
⋯
a
n
1
x
1
+
a
n
2
x
2
+
⋯
=
b
n
\begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots = b_{n} \\ \end{cases} \\
⎩
⎨
⎧a11x1+a12x2+⋯=b1a21x1+a22x2+⋯=b2⋯⋯⋯⋯an1x1+an2x2+⋯=bn
的系数矩阵 A 的行列式不等于零,即
∣
A
∣
=
∣
a
11
⋯
a
1
n
⋮
⋮
a
n
1
⋯
a
n
n
∣
≠
0
\left\lvert A \right\rvert = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \\ \end{vmatrix} \ne 0 \\
∣A∣=
a11⋮an1⋯⋯a1n⋮ann
=0
则该方程组有惟一解
x
i
=
∣
A
i
∣
∣
A
∣
x_{i} = \frac{\left\lvert A_{i} \right\rvert}{\left\lvert A \right\rvert} \\
xi=∣A∣∣Ai∣
其中
A
i
=
(
a
11
⋯
a
1
,
i
−
1
b
1
a
1
,
i
+
1
⋯
a
1
n
⋮
⋮
⋮
⋮
⋮
a
n
1
⋯
a
n
,
i
−
1
b
n
a
n
,
i
+
1
⋯
a
n
n
)
A_{i} = \begin{pmatrix} a_{11} & \cdots & a_{1, i - 1} & b_{1} & a_{1, i + 1} & \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n, i - 1} & b_{n} & a_{n, i + 1} & \cdots & a_{nn} \\ \end{pmatrix} \\
Ai=
a11⋮an1⋯⋯a1,i−1⋮an,i−1b1⋮bna1,i+1⋮an,i+1⋯⋯a1n⋮ann
文章来源地址https://www.toymoban.com/news/detail-668156.html
到了这里,关于高等数学:线性代数-第二章的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!