高等数学:线性代数-第二章

这篇具有很好参考价值的文章主要介绍了高等数学:线性代数-第二章。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

第2章 矩阵及其运算

2.1 线性方程组和矩阵

n \bm{n} n 元线性方程组 设有 n 个未知数 m 个方程的线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \\ \end{cases} \\ a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯⋯⋯am1x1+am2x2++amnxn=bm
当常数项 b i b_{i} bi 不全为零时,称该方程组为n 元非齐次线性方程组,当 b i b_{i} bi 全为零时,称该方程组为n 元齐次线性方程组。

矩阵 由 m × n m \times n m×n 个数 a i j a_{ij} aij 排成的 m 行 n 列的数表
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n \begin{matrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{matrix} \\ a11a21am1a12a22am2a1na2namn
称为 m × n m \times n m×n矩阵,记作
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) \bm{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} \\ A= a11a21am1a12a22am2a1na2namn
特别地,当 m = n 时,该矩阵叫做n 阶方阵。

增广矩阵 对于非齐次线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m} \\ \end{cases} \\ a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯⋯⋯am1x1+am2x2++amnxn=bm
它的系数矩阵、未知数矩阵和常数项矩阵分别如下:
A = ( a i j ) m × n x = ( x 1 x 2 ⋯ x n ) b = ( b 1 b 2 ⋯ b m ) \begin{align} &\bm{A} = (a_{ij})_{m \times n} \\ &\bm{x} = \begin{pmatrix} x_{1} & x_{2} & \cdots & x_{n} \\ \end{pmatrix} \\ &\bm{b} = \begin{pmatrix} b_{1} & b_{2} & \cdots & b_{m} \\ \end{pmatrix} \\ \end{align} \\ A=(aij)m×nx=(x1x2xn)b=(b1b2bm)
它的增广矩阵定义为
B = ( A b ) = ( a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋱ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ) \bm{B} = ( \begin{array}{c|c} \bm{A} & \bm{b} \end{array} ) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m} \\ \end{pmatrix} \\ B=(Ab)= a11a21am1a12a22am2a1na2namnb1b2bm
对角矩阵 方阵

( λ 1 λ 2 ⋱ λ n ) \begin{pmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \\ \end{pmatrix} \\ λ1λ2λn
叫做对角矩阵,简称对角阵,记作 d i a g ( λ 1 λ 2 ⋯ λ n ) \mathrm{diag}(\begin{array}{ccc} \lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \end{array}) diag(λ1λ2λn) .

单位矩阵 对角矩阵 d i a g ( 1 1 ⋯ 1 ) \mathrm{diag}(\begin{array}{ccc} 1 & 1 & \cdots & 1 \end{array}) diag(111) 叫做 n 阶单位矩阵,简称单位阵,记作 E n \bm{E}_{n} En .

2.2 矩阵的运算

矩阵加法
A + B = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) + ( b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋱ ⋮ b m 1 b m 2 ⋯ b m n ) = ( a 11 + b 11 a 12 + b 12 ⋯ a 1 n + b 1 n a 21 + b 21 a 22 + b 22 ⋯ a 2 n + b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 + b m 1 a m 2 + b m 2 ⋯ a m n + b m n ) \begin{align} \bm{A} + \bm{B} &= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \\ \end{pmatrix} \\ &= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \\ \end{pmatrix} \\ \end{align} \\ A+B= a11a21am1a12a22am2a1na2namn + b11b21bm1b12b22bm2b1nb2nbmn = a11+b11a21+b21am1+bm1a12+b12a22+b22am2+bm2a1n+b1na2n+b2namn+bmn
矩阵加法满足:
A + B = B + A ( A + B ) + C = A + ( B + C ) \bm{A} + \bm{B} = \bm{B} + \bm{A} (\bm{A} + \bm{B}) + \bm{C} = \bm{A} + (\bm{B} + \bm{C}) A+B=B+A(A+B)+C=A+(B+C)
矩阵数乘
c A = c ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) = ( c a 11 c a 12 ⋯ c a 1 n c a 21 c a 22 ⋯ c a 2 n ⋮ ⋮ ⋱ ⋮ c a m 1 c a m 2 ⋯ c a m n ) \begin{align} c\bm{A} &= c \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} \\ &= \begin{pmatrix} ca_{11} & ca_{12} & \cdots & ca_{1n} \\ ca_{21} & ca_{22} & \cdots & ca_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ ca_{m1} & ca_{m2} & \cdots & ca_{mn} \\ \end{pmatrix} \\ \end{align} \\ cA=c a11a21am1a12a22am2a1na2namn = ca11ca21cam1ca12ca22cam2ca1nca2ncamn
矩阵数乘满足:
c A = A c ( λ μ ) A = λ ( μ A ) ( λ + μ ) A = λ A + μ A λ ( A + B ) = λ A + λ B c\bm{A} = \bm{A}c (\lambda\mu)\bm{A} = \lambda(\mu\bm{A}) (\lambda + \mu)\bm{A} = \lambda\bm{A} + \mu\bm{A} \lambda(\bm{A} + \bm{B})=\lambda\bm{A} + \lambda\bm{B} cA=Ac(λμ)A=λ(μA)(λ+μ)A=λA+μAλ(A+B)=λA+λB
矩阵乘法 对于 m × s m \times s m×s矩阵 A \bm{A} A s × n s \times n s×n矩阵 B \bm{B} B ,它们的乘法定义为 C = A B = ( c i j ) m × n \bm{C} = \bm{A}\bm{B} = (c_{ij})_{m \times n} C=AB=(cij)m×n ,且满足
c i j = ∑ k = 1 s a i k b k j      ( i ∈ Z ≤ m , j ∈ Z ≤ n ) c_{ij} = \sum_{k = 1}^{s}a_{ik}b_{kj} ~~~~ (i \in \mathbb{Z} \leq m, j \in \mathbb{Z} \leq n) \\ cij=k=1saikbkj    (iZm,jZn)
矩阵乘法满足:
( A B ) C = A ( B C ) c ( A B ) = ( c A ) B = A ( c B ) A ( B + C ) = A B + A C ( B + C ) A = B A + C A (\bm{A}\bm{B})\bm{C} = \bm{A}(\bm{B}\bm{C}) c(\bm{A}\bm{B}) = (c\bm{A})\bm{B} = \bm{A}(c\bm{B}) \bm{A}(\bm{B} + \bm{C}) = \bm{A}\bm{B} + \bm{A}\bm{C} (\bm{B} + \bm{C})\bm{A} = \bm{B}\bm{A} + \bm{C}\bm{A} (AB)C=A(BC)c(AB)=(cA)B=A(cB)A(B+C)=AB+AC(B+C)A=BA+CA
需要注意的是,
A B ≠ B A      ( B ≠ E ) . \bm{A}\bm{B} \ne \bm{B}\bm{A} ~~~~ (\bm{B} \ne \bm{E}) . AB=BA    (B=E).
矩阵转置 矩阵 A = ( a i j ) m × n \bm{A} = (a_{ij})_{m \times n} A=(aij)m×n的转置矩阵记作 A T \bm{A}^\mathrm{T} AT ,且满足
A T = ( a j i ) n × m \bm{A}^\mathrm{T} = (a_{ji})_{n \times m} \\ AT=(aji)n×m
矩阵转置满足:
( A T ) T = A ( A + B ) T = A T + B T ( λ A ) T = λ A T ( A B ) T = B T A T (\bm{A}^{T})^{T} = \bm{A} (\bm{A} + \bm{B})^\mathrm{T} = \bm{A}^\mathrm{T} + \bm{B}^\mathrm{T} (\lambda \bm{A})^\mathrm{T} = \lambda\bm{A}^\mathrm{T} (\bm{A}\bm{B})^\mathrm{T} =\bm{B}^\mathrm{T}\bm{A}^\mathrm{T} (AT)T=A(A+B)T=AT+BT(λA)T=λAT(AB)T=BTAT
方阵的行列式 由 n 阶方阵 A \bm{A} A的元素所构成的行列式,称为方阵 A \pmb{A} A 的行列式,记作 det ⁡ A \det\bm{A} detA ∣ A ∣ | \bm{A} | A

方阵的行列式满足:
∣ A T ∣ = ∣ A ∣ ∣ λ A ∣ = λ n ∣ A ∣ | \bm{A}^\mathrm{T} | = | \bm{A} | | \lambda\bm{A} | = \lambda^{n} | \bm{A} | AT=A∣∣λA=λnA
其中 n 为矩阵 A \bm{A} A的阶数
∣ A B ∣ = ∣ A ∣ ∣ B ∣ | \pmb{A}\bm{B} | = | \pmb{A} || \bm{B} | AB=A∣∣B

2.3 逆矩阵

伴随矩阵 行列式 | \bm{A} | 的各个元素的代数余子式 A_{ij} 所构成的如下的矩阵
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) \bm{A}^{*} = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \\ \end{pmatrix} \\ A= A11A12A1nA21A22A2nAn1An2Ann
称为矩阵 A \bm{A} A的伴随矩阵,简称伴随阵,记作 A ∗ \bm{A}^{*} A

矩阵 A \bm{A} A和它的伴随矩阵 A ∗ \bm{A}^{*} A 满足
A A ∗ = A ∗ A = ∣ A ∣ E \bm{A}\bm{A}^{*}=\bm{A}^{*}\bm{A}=|\bm{A}|\bm{E} \\ AA=AA=AE
逆矩阵 对于 n 阶矩阵 A \bm{A} A,如果有一个 n 阶矩阵 B \bm{B} B ,使得
A B = B A = E \bm{A}\bm{B} = \bm{B}\bm{A} = \bm{E} \\ AB=BA=E
则说矩阵 A \bm{A} A是可逆的,并把矩阵 B \bm{B} B称为矩阵 A \bm{A} A的逆矩阵,简称逆阵,记作 A − 1 \bm{A}^{-1} A1.

如果矩阵 A \bm{A} A是可逆的,那么 A \bm{A} A 的逆矩阵是惟一的。

矩阵 A \bm{A} A 可逆的充分必要条件是 ∣ A ∣ ≠ 0 | \bm{A} | \ne 0 A=0 。若 ∣ A ∣ ≠ 0 | \bm{A} | \ne 0 A=0,则
A − 1 = 1 ∣ A ∣ A ∗ \bm{A}^{-1} = \frac{1}{| \bm{A} |}\bm{A}^{*} \\ A1=A1A
逆矩阵满足:
( A − 1 ) − 1 = A ( λ A ) − 1 = λ − 1 A − 1 (\bm{A}^{-1})^{-1} = \bm{A} (\lambda \bm{A})^{-1} = \lambda^{-1}\bm{A}^{-1} (A1)1=A(λA)1=λ1A1
A \bm{A} A B \bm{B} B 为同阶矩阵且均可逆,则
( A B ) − 1 = B − 1 A − 1 (\bm{A}\bm{B})^{-1} = \bm{B}^{-1}\bm{A}^{-1} (AB)1=B1A1
奇异矩阵 不可逆矩阵叫做奇异矩阵。

非奇异矩阵 可逆矩阵叫做非奇异矩阵。

2.4 Cramer法则

Cramer法则 如果线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ = b 1 a 21 x 1 + a 22 x 2 + ⋯ = b 2 ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ = b n \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots = b_{2} \\ \cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots = b_{n} \\ \end{cases} \\ a11x1+a12x2+=b1a21x1+a22x2+=b2⋯⋯⋯⋯an1x1+an2x2+=bn
的系数矩阵 A 的行列式不等于零,即
∣ A ∣ = ∣ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ∣ ≠ 0 \left\lvert A \right\rvert = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \\ \end{vmatrix} \ne 0 \\ A= a11an1a1nann =0
则该方程组有惟一解
x i = ∣ A i ∣ ∣ A ∣ x_{i} = \frac{\left\lvert A_{i} \right\rvert}{\left\lvert A \right\rvert} \\ xi=AAi
其中
A i = ( a 11 ⋯ a 1 , i − 1 b 1 a 1 , i + 1 ⋯ a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 ⋯ a n , i − 1 b n a n , i + 1 ⋯ a n n ) A_{i} = \begin{pmatrix} a_{11} & \cdots & a_{1, i - 1} & b_{1} & a_{1, i + 1} & \cdots & a_{1n} \\ \vdots & & \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & \cdots & a_{n, i - 1} & b_{n} & a_{n, i + 1} & \cdots & a_{nn} \\ \end{pmatrix} \\ Ai= a11an1a1,i1an,i1b1bna1,i+1an,i+1a1nann 文章来源地址https://www.toymoban.com/news/detail-668156.html

到了这里,关于高等数学:线性代数-第二章的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 从零开始学数据分析之——《线性代数》第二章 矩阵

    从零开始学数据分析之——《线性代数》第二章 矩阵

    元素全为实数的矩阵称为实矩阵  元素全为负数的矩阵称为复矩阵 只有一行(列)的矩阵称为行(列)矩阵 元素全为零的矩阵称为零矩阵 行数和列数都等于n的矩阵称为n阶矩阵或n阶方阵 主对角线元素全为1,其余元素全为0的矩阵称为单位矩阵,记作E或I 两个矩阵行数和列数

    2023年04月23日
    浏览(16)
  • 线性代数中涉及到的matlab命令-第二章:矩阵及其运算

    线性代数中涉及到的matlab命令-第二章:矩阵及其运算

    目录 1,矩阵定义 2,矩阵的运算 3,方阵的行列式和伴随矩阵  4,矩阵的逆  5,克莱默法则  6,矩阵分块  矩阵与行列式的区别: (1)形式上行列式是数表加两个竖线,矩阵是数表加大括号或中括号; (2)行列式可计算得到一个值,矩阵不能; (3)两个行列式相加与两

    2024年02月08日
    浏览(8)
  • 【课后习题】 线性代数第六版第二章 矩阵及其运算 习题二

    【课后习题】 线性代数第六版第二章 矩阵及其运算 习题二

    习题二 1. 计算下列乘积: (1) ( 4 3 1 1 − 2 3 5 7 0 ) ( 7 2 1 ) left(begin{array}{rrr}4 3 1 \\\\ 1 -2 3 \\\\ 5 7 0end{array}right)left(begin{array}{l}7 \\\\ 2 \\\\ 1end{array}right) ⎝ ⎛ ​ 4 1 5 ​ 3 − 2 7 ​ 1 3 0 ​ ⎠ ⎞ ​ ⎝ ⎛ ​ 7 2 1 ​ ⎠ ⎞ ​ ; (2) ( 1 , 2 , 3 ) ( 3 2 1 ) (1,2,3)left(begin{array}{l}3 \\\\ 2 \\\\ 1end{ar

    2024年02月05日
    浏览(21)
  • 高等数学:线性代数-第一章

    全排列 把 n 个不同的元素排成一列,叫做这 n 个元素的全排列,简称排列。 例如, { 5 , 3 , 4 , 2 , 1 } { 5, 3, 4, 2, 1 } { 5 , 3 , 4 , 2 , 1 } 是一个排列。 全排列的个数 记 P n P_{n} P n ​ 为 n 个元素的全排列的个数,则有 P n = n ! P_{n} = n! \\\\ P n ​ = n ! 排列数 记 P n m P_{n}^{m} P n m ​ 为从

    2024年02月11日
    浏览(14)
  • 高等工程数学张韵华版第二章课后题

    高等工程数学张韵华版第二章课后题

    答案勘误:修改了第四题(1)(2)和第六题(2)的答案 第 2 章 线性空间         2.1 向量的相关性                 2.1.1 线性组合和线性表示                 2.1.2 线性相关与线性无关         2.2 秩                 2.2.1 向量组的秩        

    2024年02月03日
    浏览(12)
  • 高等数学:线性代数-第三章

    矩阵的初等变换 下面三种变换称为矩阵的初等变换 对换两行(列),记作 r i ↔ r j ( c i ↔ c j ) r_{i} leftrightarrow r_{j} (c_{i} leftrightarrow c_{j}) r i ​ ↔ r j ​ ( c i ​ ↔ c j ​ ) 以数 k ≠ 0 k ne 0 k  = 0 乘某一行(列)中的所有元,记作 r i × k ( c i × k ) r_{i} times k ( c_{i}

    2024年02月11日
    浏览(16)
  • 《python数学实验与建模》(2)高等数学与线性代数

    《python数学实验与建模》(2)高等数学与线性代数

    3.1 求下列积分的符号解 (1) ∫ 0 1 1 + 4 x   d x int_{0}^{1}sqrt{1+4x}~dx ∫ 0 1 ​ 1 + 4 x ​   d x (2) ∫ 0 + ∞ e − x sin ⁡ x   d x int_{0}^{+infty}e^{-x}sin x ~dx ∫ 0 + ∞ ​ e − x sin x   d x 结果: − 1 6 + 5 5 6 -frac{1}{6}+frac{5sqrt{5}}{6} − 6 1 ​ + 6 5 5 ​ ​ 1 2 frac{1}{2} 2 1 ​ 3.2 求方程 x

    2023年04月24日
    浏览(11)
  • Python在高等数学和线性代数中的应用

    Python在高等数学和线性代数中的应用

    Python数学实验与建模学习 目录 1. SymPy工具库 1.1 符号运算基础 1.2 用SymPy做符号函数画图  2. 高等数学的符号解 2.1 极限 2.2 导数  2.3 级数求和  2.4 泰勒展开  2.5 不定积分和定积分  2.6 代数方程  2.7 微分方程  3. 高等数学问题的数值解 3.1 一重积分 3.1.1 梯形计算 3.1.2 辛普森

    2024年01月25日
    浏览(14)
  • 高等代数(七)-线性变换03:线性变换的矩阵

    § 3 § 3 §3 线性变换的矩阵 设 V V V 是数域 P P P 上 n n n 维线性空间, ε 1 , ε 2 , ⋯   , ε n varepsilon_{1}, varepsilon_{2}, cdots, varepsilon_{n} ε 1 ​ , ε 2 ​ , ⋯ , ε n ​ 是 V V V 的一组基, 现在我们来建立线性变换与矩阵的关系. 空间 V V V 中任一向量 ξ xi ξ 可以经 ε 1 , ε 2 , ⋯  

    2024年02月20日
    浏览(10)
  • 高等代数--多项式与线性空间

    高等代数--多项式与线性空间

    1.多项式的定义: 形如 f(x)= an*x^n+.......ai*x^i+...a0 ,叫做多项式,其中ai 是系数,x 是未知数,i 叫做 指数。 若an 不为0称f(x)位 n 次多项式,记作 deg f(x) 如果 a0 !=0,且 ai ==0 (i=1.2....n)则称f(x)为零次多项式,f(x)=b;等同于K 中非零元 规定 0 多项式 的次数,d

    2024年02月04日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包