8_分类算法-k近邻算法(KNN)

这篇具有很好参考价值的文章主要介绍了8_分类算法-k近邻算法(KNN)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 KNN算法

  • 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
  • 来源:KNN算法最早是由Cover和Hart提出的一种分类算法

1.1 KNN算法原理

  • K近邻(K-nearst neighbors,KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。比如:判断一个人的人品,只需要观察与他来往最密切的几个人的人品好坏就可以得出,即“近朱者赤,近墨者黑";KNN算法既可以应用于分类应用中,也可以应用在回归应用中。
  • KNN在做回归和分类的主要区别在于最后做预测的时候的决策方式不同。KNN在分类预测时,一般采用多数表决法;而在做回归预测时,一般采用平均值法

1.2 KNN过程

1、从训练集合中获取K个离待预测样本距离最近的样本数据;
2、根据获取得到的K个样本数据来预测当前待预测样本的目标属性值。

1.3 KNN三要素

在KNN算法中,非常重要的主要是三个因素:

  • K值的选择:对于K值的选择,一般根据样本分布选择一个较小的值,然后通过交叉验证来选择一个比较合适的最终值;当选择比较小的K值的时候,表示使用较小领域中的样本进行预测,训练误差会减小,但是会导致模型变得复杂,容易过拟合;当选择较大的K值的时候,表示使用较大领域中的样本进行预测,训练误差会增大,同时会使模型变得简单,容易导致欠拟合;
  • 距离的度量:一般使用欧氏距离(欧几里得距离);
  • 决策规则:在分类模型中,主要使用多数表决法或者加权多数表决法;在回归模型中,主要使用平均值法或者加权平均值法。

1.4 KNN分类预测规则

在KNN分类应用中,一般采用多数表决法或者加权多数表决法。

  • 多数表决法:每个邻近样本的权重是一样的,也就是说最终预测的结果为出现类别最多的那个类,比如下图中蓝色圆圈的最终类别为红色;
  • 加权多数表决法:每个邻近样本的权重是不一样的,一般情况下采用权重和距离成反比的方式来计算,也就是说最终预测结果是出现权重最大的那个类别;比如下图中,假设三个红色点到待预测样本点的距离均为2,两个黄色点到待预测样本点距离为1,那么蓝色圆圈的最终类别为黄色。

8_分类算法-k近邻算法(KNN),机器学习,分类,近邻算法,数据挖掘

1.5 KNN回归预测规则

在KNN回归应用中,一般采用平均值法或者加权平均值法。

  • 平均值法:每个邻近样本的权重是一样的,也就是说最终预测的结果为所有邻近样本的目标属性值的均值;比如上图中,蓝色圆圈的最终预测值为:2.6;
  • 加权平均值法:每个邻近样本的权重是不一样的,一般情况下采用权重和距离成反比的方式来计算,也就是说在计算均值的时候进行加权操作;比如上图中,假设上面三个点到待预测样本点的距离均为2,下面两个点到待预测样本点距离为1,那么蓝色圆圈的最终预测值为:2.43,(权重分别为:1/7和2/7)

1.6 KNN算法实现方式(重点)

KNN算法的重点在于找出K个最邻近的点,主要方式有以下几种:

  • 蛮力实现(brute):计算预测样本到所有训练集样本的距离,然后选择最小的k个距离即可得到K个最邻近点。缺点在于当特征数比较多、样本数比较多的时候,算法的执行效率比较低;
  • KD树(kd_tree):KD树算法中,首先是对训练数据进行建模,构建KD树,然后再根据建好的模型来获取邻近样本数据。

除此之外,还有一些从KD-Tree修改后的求解最邻近点的算法,比如:Ball Tree BBF Tree,MVP Tree等。

1.7 k近邻算法优缺点

优点:简单,易于理解,易于实现,无需估计参数,无需训练

缺点:

  • 懒惰算法,对测试样本分类时的计算量大,内存开销大
  • 必须指定K值,K值选择不当则分类精度不能保证

使用场景:小数据场景,几千~几万样本,具体场景具体业务去测试

2 KD-Tree

  • KD Tree是KNN算法中用于计算最近邻的快速、便捷构建方式。
  • 当样本数据量少的时候,我们可以使用brute这种暴力的方式进行求解最近邻,即计算到所有样本的距离。但是当样本量比较大的时候,直接计算所有样本的距离,工作量有点大,所以在这种情况下,我们可以使用kd tree来快速的计算。

2.1 KD Tree构建方式

KD树采用从m个样本的n维特征中,分别计算n个特征取值的方差,用方差最大的第k维特征nk作为根节点。对于这个特征,选择取值的中位数nkv作为样本的划分点,对于小于该值的样本划分到左子树,对于大于等于该值的样本划分到右子树,对左右子树采用同样的方式找方差最大的特征作为根节点,递归即可产生KD树。
8_分类算法-k近邻算法(KNN),机器学习,分类,近邻算法,数据挖掘
8_分类算法-k近邻算法(KNN),机器学习,分类,近邻算法,数据挖掘
8_分类算法-k近邻算法(KNN),机器学习,分类,近邻算法,数据挖掘

2.2 KD Tree查找最近邻

当我们生成KD树以后,就可以去预测测试集里面的样本目标点了。

对于一个目标点,我们首先在KD树里面找到包含目标点的叶子节点。

以目标点为圆心,以目标点到叶子节点样本实例的距离为半径,得到一个超球体,最近邻的点一定在这个超球体内部。

然后返回叶子节点的父节点,检查另一个子节点包含的超矩形体是否和超球体相交,如果相交就到这个子节点寻找是否有更加近的近邻,有的话就更新最近邻。如果不相交那就简单了,我们直接返回父节点的父节点,在另一个子树继续搜索最近邻。当回溯到根节点时,算法结束,此时保存的最近邻节点就是最终的最近邻。
8_分类算法-k近邻算法(KNN),机器学习,分类,近邻算法,数据挖掘
8_分类算法-k近邻算法(KNN),机器学习,分类,近邻算法,数据挖掘

2.3 KNN参数说明

8_分类算法-k近邻算法(KNN),机器学习,分类,近邻算法,数据挖掘文章来源地址https://www.toymoban.com/news/detail-668165.html

到了这里,关于8_分类算法-k近邻算法(KNN)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【机器学习实战】K- 近邻算法(KNN算法)

    K-近邻算法 ,又称为  KNN 算法 ,是数据挖掘技术中原理最简单的算法。 KNN  的工作原理:给定一个已知类别标签的数据训练集,输入没有标签的新数据后,在训练数据集中找到与新数据最临近的 K 个实例。如果这 K 个实例的多数属于某个类别,那么新数据就属于这个类别。

    2023年04月20日
    浏览(56)
  • 机器学习——K最近邻算法(KNN)

    机器学习——K最近邻算法(KNN) 在传统机器学习中,KNN算法是一种基于实例的学习算法,能解决分类和回归问题,而本文将介绍一下KNN即K最近邻算法。 K最近邻(KNN)算法是一种基于实例的学习算法,用于分类和回归问题。它的原理是 根据样本之间的距离来进行预测 。 核

    2024年02月09日
    浏览(42)
  • 数据挖掘与机器学习:Apripori算法

    目录 第一关:候选生成  任务描述: 相关知识: 一、Apripori算法候选生成: 二、Apripori算法候选生成代码实现: 编程要求: 测试说明: 第二关:候选剪枝 任务描述: 相关知识: Apripori算法候选剪枝: Apripori算法候选剪枝代码实现: 编程要求: 测试说明: 第三关:基于遍

    2024年02月07日
    浏览(78)
  • 【Python机器学习】实验06 KNN最近邻算法

    1. k k k 近邻法是基本且简单的分类与回归方法。 k k k 近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 k k k 个最近邻训练实例点,然后利用这 k k k 个训练实例点的类的多数来预测输入实例点的类。 2. k k k 近邻模型对应于基于训练数据集对

    2024年02月15日
    浏览(51)
  • 机器学习算法在数据挖掘中的应用

    在数据挖掘的实践中,各种机器学习算法都扮演着重要的角色,它们能够从数据中学习规律和模式,并用于预测、分类、聚类等任务。以下是几种常见的机器学习算法以及它们在数据挖掘任务中的应用场景和优缺点。 1. 决策树(Decision Trees):    - 应用场景:决策树广泛应

    2024年03月17日
    浏览(55)
  • 【Python】机器学习-K-近邻(KNN)算法【文末送书】

             目录 一 . K-近邻算法(KNN)概述  二、KNN算法实现 三、 MATLAB实现 四、 实战         K-近邻算法(KNN)是一种基本的分类算法,它通过计算数据点之间的距离来进行分类。在KNN算法中,当我们需要对一个未知数据点进行分类时,它会与训练集中的各个数据点进

    2024年02月08日
    浏览(46)
  • 多元分类预测 | Matlab基于K近邻算法(KNN)的数据分类预测,多特征输入模型

    效果一览 文章概述 基于K近邻算法(KNN)的数据分类预测,多特征输入模型 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。

    2024年02月13日
    浏览(78)
  • 用K近邻(KNN)机器学习算法进行股票走势预测-Python

    K近邻(KNN,K-Nearest Neighbors)是最简单的机器学习算法之一,可用于回归和分类。KNN是一种“惰性”学习算法,从技术上讲,它不训练模型来进行预测。K近邻的逻辑是,假设有一个观测值,这个观测值被预测属于离它k个最近观测值中所占比例最大的那一个类。KNN方法是直接尝试

    2024年02月04日
    浏览(53)
  • 四、分类算法 - KNN算法(K-近邻算法)

    目录 1、K-近邻算法 1.1 K-近邻算法原理 1.2 K - 近邻算法API 1.3 案例1:鸢尾花种类预测 1.3.1 数据集介绍 1.3.2 步骤 1.4 KNN 算法总结 sklearn转换器和估算器 KNN算法 模型选择和调优 朴素贝叶斯算法 决策树 随机森林 1.3.1 数据集介绍 1.3.2 步骤 获取数据 数据集划分 特征工程   - 标准

    2024年02月22日
    浏览(49)
  • 8_分类算法-k近邻算法(KNN)

    定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 来源:KNN算法最早是由Cover和Hart提出的一种分类算法 K近邻(K-nearst neighbors,KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居

    2024年02月11日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包