数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成

这篇具有很好参考价值的文章主要介绍了数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成

生成效果

数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成,MCMC,马尔科夫蒙特卡洛模拟,数据生成

基本描述

1.MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成;
2.马尔科夫链蒙特卡洛方法(Markov Chain Monte Carlo),简称MCMC,MCMC算法的核心思想是我们已知一个概率密度函数,需要从这个概率分布中采样,来分析这个分布的一些统计特性。

模型描述

马尔科夫蒙特卡洛模拟(Markov Monte Carlo simulation)是一种基于马尔科夫链的随机模拟方法,用于生成服从某个特定分布的数据样本。下面是使用马尔科夫蒙特卡洛模拟生成数据的一般过程:
定义状态空间:确定数据的可能取值范围,可以是一个离散的状态空间或者一个连续的状态空间。
构建转移矩阵:根据问题的特点,确定状态之间的转移概率。转移矩阵描述了从一个状态转移到另一个状态的概率。
初始化状态:从状态空间中选择一个初始状态。
进行模拟:根据转移矩阵和当前状态,按照一定的概率规则转移到下一个状态。重复这个过程多次,直到达到所需的样本数量。
生成样本:记录每个状态的取值,得到生成的数据样本。

程序设计

  • 完整程序和数据获取方式:私信博主回复MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成

burn_in = 1000;      % Number of burn-in iterations
proposal_std = 0.9;  % Standard deviation of proposal distribution
% Initialize the chain
current_state = mean(original_data); % Start from the mean of the original data
% Preallocate array for storing generated samples
synthetic_data = zeros(1, num_samples);
% Metropolis-Hastings algorithm
for t = 1:num_samples + burn_in
% Propose a new state from a Gaussian distribution
proposed_state = current_state + proposal_std * randn();
% Calculate acceptance ratio
current_likelihood = normpdf(current_state, target_mean, target_std);
proposed_likelihood = normpdf(proposed_state, target_mean, target_std);
acceptance_ratio = min(1, proposed_likelihood / current_likelihood);
% Accept or reject the proposed state
if rand() < acceptance_ratio
current_state = proposed_state;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229文章来源地址https://www.toymoban.com/news/detail-668243.html

到了这里,关于数据生成 | MATLAB实现MCMC马尔科夫蒙特卡洛模拟的数据生成的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习基础 HMM模型(隐马尔科夫)

    推荐参考:https://juejin.cn/post/6844903891834781703 在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名。 马尔科

    2024年02月02日
    浏览(69)
  • python之马尔科夫链(Markov Chain)

    马尔可夫链(Markov Chain)是一种随机过程,具有“马尔可夫性质”,即在给定当前状态的条件下,未来状态的概率分布仅依赖于当前状态,而与过去状态无关。马尔可夫链在很多领域都有广泛的应用,包括蒙特卡洛方法、统计物理学、自然语言处理等。 马尔可夫链的一般定义

    2024年02月21日
    浏览(44)
  • 8.(Python数模)(预测模型一)马尔科夫链预测

    马尔科夫链是一种进行预测的方法,常用于系统未来时刻情况只和现在有关, 而与过去无关 。 用下面这个例子来讲述马尔科夫链。 如何预测下一时刻计算机发生故障的概率? 当前状态只存在0(故障状态)和1(正常状态)两种,每种状态下各存在两个未来状态(00,01,11,10)

    2024年02月09日
    浏览(46)
  • 15、条件概率、全概率公式、贝叶斯公式、马尔科夫链

    定义:设A、B是两个事件,且,P(A) 0 则称 为事件A发生的条件下事件B的条件概率 对这个式子进行变形,即可得到概率的乘法公式: P(A) 0 时,则 P(B) 0 时,则 乍一看,这个式子不就是把除法形式写成了乘法形式嘛,不然不然,这个区别是本质的,分母不为0很关键,而且看法也

    2024年02月13日
    浏览(46)
  • 语音识别的进展:从隐马尔科夫模型到Transformers

    语音识别,也称为语音转文本,是一种将人类语音信号转换为文本的技术。它在人工智能领域具有重要的应用价值,例如语音助手、语音密码等。语音识别技术的发展历程可以分为以下几个阶段: 早期语音识别技术(1950年代至1970年代):这一阶段的语音识别技术主要基于隐

    2024年02月03日
    浏览(53)
  • 【RL】(task1)马尔科夫过程、动态规划、DQN

    递归结构形式的贝尔曼方程计算给定状态下的预期回报,这样的方式使得用逐步迭代的方法就能逼近真实的状态/行动值。 有了Bellman equation就可以计算价值函数了 马尔科夫过程描述了一个具有无记忆性质的随机过程,未来状态只依赖于当前状态,与过去状态无关,类似于一个

    2024年01月21日
    浏览(37)
  • 马尔科夫决策过程-策略迭代与值迭代(基于动态规划)

    强化学习入门笔记,基于easy RL RL基础 强化学习(reinforcement learning,RL):智能体可以在与复杂且不确定的环境进行交互时,尝试使所获得的奖励最大化的算法。 动作(action): 环境接收到的智能体基于当前状态的输出。 状态(state):智能体从环境中获取的状态。 奖

    2024年02月04日
    浏览(46)
  • 【线性代数07】马尔科夫矩阵和傅里叶矩阵

      本篇可以看作对行列式和特征值应用的举例。但我会谈些我感兴趣的部分,即离散信源信道模型和循环矩阵的对角化。 这个矩阵从概率论中概率的定义生发,因此 各元素实际上就是非负的概率值 。马尔科夫矩阵(Markov matrix)又称概率矩阵(probability matrix)、转移概率矩

    2024年02月04日
    浏览(39)
  • 马尔科夫不等式和坎泰利不等式的证明

    马尔科夫不等式(Markov’s inequality) 对于随机变量 X X X ,有 P ( ∣ X ∣ ⩾ ε ) ⩽ E ∣ X ∣ k ε k , ε 0 , k ∞ Pleft( left| X right|geqslant varepsilon right) leqslant frac{Eleft| X right|^k}{varepsilon ^k},varepsilon 0,kinfty P ( ∣ X ∣ ⩾ ε ) ⩽ ε k E ∣ X ∣ k ​ , ε 0 , k ∞ 证明: P ( ∣ X ∣ ⩾ ε

    2024年02月08日
    浏览(39)
  • 阿白数模笔记之灰色-马尔科夫模型(Grey Markov model)

    目录 前言(preface) GM(1,1) 简介(brief introdution)  ①级比检验(Grade ratio test) ②建立GM(1,1)模型 Ⅰ、邻值生成序列(Adjacent value generating sequence ) Ⅱ、回归分析(regression analysis) Ⅲ、残差检验(Residual test) Markov chain ① 转移概率矩阵(Transition probability matrix) ②状态分布向

    2024年02月09日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包