【LeetCode】494.目标和

这篇具有很好参考价值的文章主要介绍了【LeetCode】494.目标和。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

题目

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

解答

源代码

class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum = 0;

        for (int num : nums) {
            sum += num;
        }

        if (sum - target < 0 || (sum - target) % 2 == 1) {
            return 0;
        }

        int len = nums.length, neg = (sum - target) / 2;
        int[][] dp = new int[len + 1][neg + 1];
        dp[0][0] = 1;

        for (int i = 1; i < len + 1; i++) {
            int num = nums[i - 1];

            for (int j = 0; j < neg + 1; j++) {
                dp[i][j] = dp[i - 1][j];

                if (j >= num) {
                    dp[i][j] += dp[i - 1][j - num];
                }
            }
        }

        return dp[len][neg];
    }
}

总结

记数组的元素和为 sum,添加 - 号的元素之和为 neg,则其余添加 + 的元素之和为 sum−neg,得到的表达式的结果为:

(sum − neg) − neg = sum − 2 * neg = target  即 neg = (sum − target) / 2

由于数组 nums 中的元素都是非负整数,neg 也必须是非负整数,所以上式成立的前提是 sum − target 是非负偶数。若不符合该条件可直接返回 0。

若上式成立,问题转化成在数组 nums 中选取若干元素,使得这些元素之和等于 neg,计算选取元素的方案数。我们可以使用动态规划的方法求解。

定义二维数组 dp,其中 dp[i][j] 表示在数组 nums 的前 i 个数中选取元素,使得这些元素之和等于 j 的方案数。假设数组 nums 的长度为 n,则最终答案为 dp[n][neg]。

当没有任何元素可以选取时,元素和只能是 0,对应的方案数是 1,因此动态规划的边界条件是:

当j = 0时,dp[0][j] = 1;当j > 0时,dp[0][j] = 0;

当 1 ≤ i ≤ n 时,对于数组 nums 中的第 i 个元素 num(i 的计数从 1 开始),遍历 0 ≤ j ≤ neg,计算 dp[i][j] 的值:

如果 j < num,则不能选 num,此时有 dp[i][j] = dp[i − 1][j];

如果 j ≥ num,则如果不选 num,方案数是 dp[i−1][j],如果选 num,方案数是 dp[i − 1][j − num],此时有 dp[i][j]=dp[i − 1][j] + dp[i − 1][j − num]。

因此状态转移如下:

当j < nums[i]时,dp[i][j] = dp[i−1][j];当j >= nums[i]时, dp[i][j] = dp[i - 1][j] + dp[i − 1][j − nums[i]]。

最终得到 dp[n][neg] 的值即为答案。文章来源地址https://www.toymoban.com/news/detail-668376.html

到了这里,关于【LeetCode】494.目标和的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LeetCode---494目标和

    494. 目标和 给你一个整数数组  nums  和一个整数  target  。 向数组中的每个整数前添加  \\\'+\\\'  或  \\\'-\\\'  ,然后串联起所有整数,可以构造一个  表达式  : 例如, nums = [2, 1]  ,可以在  2  之前添加  \\\'+\\\'  ,在  1  之前添加  \\\'-\\\'  ,然后串联起来得到表达式  \\\"+2-1\\\"  。 返

    2024年02月05日
    浏览(34)
  • 【LeetCode】494. 目标和

    首先,将这道题想成 0-1背包问题 ,我们最终要输出的结果是最多的方法数,因此 dp 数组需要记录具体的方法数。 状态定义 按照 0-1 背包问题的套路,我们将状态定义为 : dp[i][j] ,表示「前 i 个数字,和等于 j 的情况下,能够达到的不同表达式的最大数目」。 状态转移方程

    2024年02月03日
    浏览(35)
  • 动态规划 Leetcode 494 目标和

    Leetcode 494 学习记录自代码随想录 要点:1.想到±代表其实求的是连个组合的差值,进而记left为正组合,right为负组合,则有 { l e f t − r i g h t = t a r g e t l e f t + r i g h t = s u m left { begin{matrix} left-right=target \\\\ left+right=sum end{matrix} right . { l e f t − r i g h t = t a r g e t l e f t + r

    2024年04月09日
    浏览(61)
  • Day43|leetcode 1049.最后一块石头的重量II、494.目标和、474.一和零

    题目链接:1049. 最后一块石头的重量 II - 力扣(LeetCode) 视频链接:动态规划之背包问题,这个背包最多能装多少?LeetCode:1049.最后一块石头的重量II_哔哩哔哩_bilibili 有一堆石头,每块石头的重量都是正整数。 每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设

    2024年02月10日
    浏览(51)
  • [Leetcode] 416. 分割等和子集、1049. 最后一块石头的重量 II、494. 目标和、474. 一和零

    内容:今天复习下dp数组中的背包问题 分割等和子集 - 能否装满 最后一块石头 - 尽可能装满 目标和 - 有多少种方法装 一和零 - 装满背包有多少个物品 416. 分割等和子集 10背包:用/不用;有容量;有价值 dp[j] : 容量为j,最大价值为dp[j]         重量和价值等价 dp[target] == t

    2024年02月16日
    浏览(43)
  • 【LeetCode题目详解】第九章 动态规划 part05 1049. 最后一块石头的重量 II 494. 目标和 474.一和零(day43补)

    有一堆石头,用整数数组  stones 表示。其中  stones[i] 表示第 i 块石头的重量。 每一回合,从中选出 任意两块石头 ,然后将它们一起粉碎。假设石头的重量分别为  x 和  y ,且  x = y 。那么粉碎的可能结果如下: 如果  x == y ,那么两块石头都会被完全粉碎; 如果  x != y

    2024年02月09日
    浏览(38)
  • 代码随想录Day36 动态规划05 LeetCode T1049最后一块石头的重量II T494 目标和 T474 一和零

    理论基础  : 代码随想录Day34 LeetCode T343整数拆分 T96 不同的二叉搜索树-CSDN博客 1.明白dp数组的含义 2.明白递推公式的含义 3.初始化dp数组 4.注意dp数组的遍历顺序 5.打印dp数组排错 题目链接:1049. 最后一块石头的重量 II - 力扣(LeetCode) 这题我们仍然采用动规五部曲来写,这题和

    2024年02月06日
    浏览(41)
  • Leetcode算法解析——查找总价格为目标值的两个商品

    商品价格按照升序记录于数组 price 。请在购物车中找到两个商品的价格总和刚好是 target 。若存在多种情况,返回任一结果即可。 示例 1: 示例 2: 提示: 1 = price.length = 10^5 1 = price[i] = 10^6 1 = target = 2*10^6 用两层循环把所有的可能性都列举出来,然后判断是否有等目标值的两

    2024年02月07日
    浏览(42)
  • 算法训练第四十三天|1049. 最后一块石头的重量 II 、494. 目标和、474.一和零

    题目链接:1049. 最后一块石头的重量 II 参考:https://programmercarl.com/1049.%E6%9C%80%E5%90%8E%E4%B8%80%E5%9D%97%E7%9F%B3%E5%A4%B4%E7%9A%84%E9%87%8D%E9%87%8FII.html 题目难度:中等 有一堆石头,每块石头的重量都是正整数。 每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分

    2023年04月09日
    浏览(38)
  • leetcode77. 组合(回溯算法-java)

    来源:力扣(LeetCode) 链接:https://leetcode.cn/problems/combinations 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 你可以按 任何顺序 返回答案。 示例 1: 输入:n = 4, k = 2 输出: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ] 示例 2: 输入:n = 1, k = 1 输出:[[1]] 提示:

    2024年02月11日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包