机器学习&&深度学习——NLP实战(情感分析模型——RNN实现)

这篇具有很好参考价值的文章主要介绍了机器学习&&深度学习——NLP实战(情感分析模型——RNN实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——NLP实战(情感分析模型——数据集)
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

引入

与词相似度和类比任务一样,我们也可以将预先训练的词向量应用于情感分析。上节已经下载过了IMDb评论数据集了,这个数据集也不算很大(虽然下载了很久。。。),使用在大规模语料库上预训练的文本表示可以减少模型的过拟合。我们将使用GloVe模型来表示每个词元,并将这些词元表示送入多层双向循环神经网络以获得文本序列表示,该文本序列表示将被转换为情感分析输出。对于相同的下游应用,之后再讲不同的架构选择。
机器学习&&深度学习——NLP实战(情感分析模型——RNN实现),机器学习&&深度学习,机器学习,深度学习,自然语言处理,人工智能,pytorch
如上图所示,将GloVe送入基于循环神经网络的架构,用于情感分析。

import torch
from torch import nn
from d2l import torch as d2l

batch_size = 64
train_iter, test_iter, vocab = d2l.load_data_imdb(batch_size)

使用循环神经网络表示单个文本

在文本分类任务中,可变长度的文本序列将被转换为固定长度的类别。在下面的BiRNN类中,虽然文本序列的每个词元经过嵌入层self.embedding获得其单独的预训练GloVe表示,但是整个序列由双向循环神经网络self.encoder编码。更具体的说,双向长短期记忆网络在初始和最终时间步的隐状态(在最后一层)被连结起来作为文本序列的表示。然后,通过一个具有两个输出(“积极”和“消极”)的全连接层(self.decoder),将此单一文本表示转换为输出类别。

class BiRNN(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens,
                 num_layers, **kwargs):
        super(BiRNN, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        # 将bidirectional设置为True以获取双向循环神经网络
        self.encoder = nn.LSTM(embed_size, num_hiddens, num_layers=num_layers,
                                bidirectional=True)
        self.decoder = nn.Linear(4 * num_hiddens, 2)

    def forward(self, inputs):
        # inputs的形状是(批量大小,时间步数)
        # 因为长短期记忆网络要求其输入的第一个维度是时间维,
        # 所以在获得词元表示之前,输入会被转置。
        # 输出形状为(时间步数,批量大小,词向量维度)
        embeddings = self.embedding(inputs.T)
        self.encoder.flatten_parameters()
        # 返回上一个隐藏层在不同时间步的隐状态,
        # outputs的形状是(时间步数,批量大小,2*隐藏单元数)
        outputs, _ = self.encoder(embeddings)
        # 连结初始和最终时间步的隐状态,作为全连接层的输入,
        # 其形状为(批量大小,4*隐藏单元数)
        encoding = torch.cat((outputs[0], outputs[-1]), dim=1)
        outs = self.decoder(encoding)
        return outs

让我们构造一个具有两个隐藏层的双向循环神经网络来表示单个文本以进行情感分析。

embed_size, num_hiddens, num_layers = 100, 100, 2
devices = d2l.try_all_gpus()
net = BiRNN(len(vocab), embed_size, num_hiddens, num_layers)

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)
    if type(m) == nn.LSTM:
        for param in m._flat_weights_names:
            if "weight" in param:
                nn.init.xavier_uniform_(m._parameters[param])
net.apply(init_weights)

加载预训练的词向量

下面,我们为词表中的单词加载预训练的100维(要与embed_size一致)的GloVe嵌入。我们使用这些预训练的词向量来表示评论中的词元,并且在训练期间不要更新这些向量。

glove_embedding = d2l.TokenEmbedding('glove.6b.100d')
embeds = glove_embedding[vocab.idx_to_token]
net.embedding.weight.data.copy_(embeds)
net.embedding.weight.requires_grad = False

训练和评估模型

现在我们可以训练双向循环神经网络进行情感分析。使用Adam优化算法。

lr, num_epochs = 0.01, 5
trainer = torch.optim.Adam(net.parameters(), lr=lr)
loss = nn.CrossEntropyLoss(reduction="none")
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
    devices)
d2l.plt.show()

运行结果:

loss 0.300, train acc 0.875, test acc 0.818
79.4 examples/sec on [device(type=‘cpu’)]

运行图片:
机器学习&&深度学习——NLP实战(情感分析模型——RNN实现),机器学习&&深度学习,机器学习,深度学习,自然语言处理,人工智能,pytorch
接着我们定义一下函数来使用训练好的模型net预测文本序列的情感。

#@save
def predict_sentiment(net, vocab, sequence):
    """预测文本序列的情感"""
    sequence = torch.tensor(vocab[sequence.split()], device=d2l.try_gpu())
    label = torch.argmax(net(sequence.reshape(1, -1)), dim=1)
    return 'positive' if label == 1 else 'negative'

最后,让我们使用训练好的模型对两个简单的句子进行情感预测。

predict_sentiment(net, vocab, 'this movie is so great')

运行结果:

‘positive’

predict_sentiment(net, vocab, 'this movie is so bad')

运行结果:

‘negative’

小结

1、预训练的词向量可以表示文本序列中的各个词元。
2、双向循环神经网络可以表示文本序列。例如通过连结初始和最终时间步的隐状态,可以使用全连接的层将该单个文本表示转换为类别。文章来源地址https://www.toymoban.com/news/detail-668634.html

到了这里,关于机器学习&&深度学习——NLP实战(情感分析模型——RNN实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据舆情评论数据分析:基于Python微博舆情数据爬虫可视化分析系统(NLP情感分析+爬虫+机器学习)

    基于Python的微博舆情数据爬虫可视化分析系统,结合了NLP情感分析、爬虫技术和机器学习算法。该系统的主要目标是从微博平台上抓取实时数据,对这些数据进行情感分析,并通过可视化方式呈现分析结果,以帮助用户更好地了解舆情动向和情感倾向。系统首先利用爬虫技术

    2024年04月15日
    浏览(45)
  • 使用深度学习模型进行情感分析

    在本篇文章中,我们将介绍如何使用深度学习模型进行情感分析。具体来说,我们将使用卷积神经网络(Convolutional Neural Network,CNN)对 IMDB 数据集进行情感分类。 1. 数据集介绍 IMDB 数据集是一个常用的自然语言处理数据集,包含了 50000 条电影评论。其中,25000 条评论用于训

    2023年04月15日
    浏览(48)
  • 小白的第一个RNN(情感分析模型)

    平台:window10,python3.11.4,pycharm 框架:keras 编写日期:20230903 数据集:英语,自编,训练集和测试集分别有4个样本,标签有积极和消极两种 新建文件夹,进入目录 创建虚拟环境 激活虚拟环境 安装依赖库 目录下创建main.py,进入pycharm打开文件夹,编写代码 文件目录 控制台

    2024年02月09日
    浏览(36)
  • 大数据毕设项目 - 深度学习 机器学习 酒店评价情感分析算法实现

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月19日
    浏览(39)
  • 机器学习&&深度学习——序列模型(NLP启动!)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——卷积神经网络(LeNet) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 现在多多少少是打下了一点基础了,因为我的本科毕业论文是NLP方向的,所以现在需要赶忙打

    2024年02月14日
    浏览(39)
  • 机器学习&&深度学习——NLP实战(自然语言推断——数据集)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——NLP实战(情感分析模型——textCNN实现) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 之前我们分别使用了RNN和textCNN实现了情感分析模型,这个任务的目的是将单

    2024年02月12日
    浏览(56)
  • 机器学习&&深度学习——NLP实战(自然语言推断——注意力机制实现)

    👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习深度学习——NLP实战(自然语言推断——数据集) 📚订阅专栏:机器学习深度学习 希望文章对你们有所帮助 在之前已经介绍了什么是自然语言推断,并且下载并处理了SNLI数据集。由于许

    2024年02月11日
    浏览(39)
  • AI机器学习实战 | 使用 Python 和 scikit-learn 库进行情感分析

    专栏集锦,大佬们可以收藏以备不时之需 Spring Cloud实战专栏:https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏:https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏:https://blog.csdn.net/superdangbo/category_9271502.html tensorflow专栏:https://blog.csdn.net/superdangbo/category_869

    2024年02月05日
    浏览(40)
  • ChatGPT 使用 拓展资料:无需任何机器学习,如何利用大语言模型做情感分析?

    ChatGPT 拓展资料:无需任何机器学习,如何利用大语言模型做情感分析? 用于从文本数据中识别情感 Glove Vectors:

    2023年04月25日
    浏览(51)
  • 【python,机器学习,nlp】RNN循环神经网络

    RNN(Recurrent Neural Network),中文称作循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出。 因为RNN结构能够很好利用序列之间的关系,因此针对自然界具有连续性的输入序列,如人类的语言,语音等

    2024年01月18日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包