A Survey on Large Language Models for Recommendation

这篇具有很好参考价值的文章主要介绍了A Survey on Large Language Models for Recommendation。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文是LLM系列的文章,针对《A Survey on Large Language Models for Recommendation》的翻译。

摘要

大型语言模型(LLM)作为自然语言处理(NLP)领域的强大工具,近年来在推荐系统(RS)领域受到了极大的关注。这些模型使用自监督学习在大量数据上进行训练,在学习通用表示方面取得了显著成功,并有可能通过一些有效的转移技术(如微调和提示调整)来增强推荐系统的各个方面。利用语言模型的力量来提高推荐质量的关键方面是利用它们对文本特征的高质量表示以及它们对外部知识的广泛覆盖来建立项目和用户之间的相关性。为了全面了解现有的基于LLM的推荐系统,本综述提出了一种分类法,将这些模型分为两个主要范式,分别是用于推荐的判别LLM(DLLM4Rec)和用于推荐的生成LLM(GLLM4Reg),后者首次被系统地分类。此外,我们系统地回顾和分析了每种范式中现有的基于LLM的推荐系统,深入了解了它们的方法、技术和性能。此外,我们还确定了关键挑战和一些有价值的发现,为研究人员和从业者提供了灵感。我们还创建了一个GitHub存储库,为LLM上的相关论文编制索引,以供推荐。

1 引言

2 建模范式和分类

3 判别式LLM用于推荐

4 生成式LLM用于推荐

5 发现

6 结论

在本文中,我们回顾了推荐系统的大型语言模型(LLM)的研究领域。我们将现有的工作分为判别模型和生成模型,然后用领域自适应的方式对它们进行了详细的说明。为了防止概念混淆,我们在基于LLM的推荐中提供了微调、提示、提示调整和指令微调的定义和区别。据我们所知,我们的综述是第一次专门针对推荐系统生成LLM的系统和最新综述,它进一步总结了许多相关研究的共同发现和挑战。因此,本次综述为研究人员全面了解LLM建议和探索潜在的研究方向提供了宝贵的资源。文章来源地址https://www.toymoban.com/news/detail-668700.html

到了这里,关于A Survey on Large Language Models for Recommendation的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文解读:Siren’s Song in the AI Ocean: A Survey on Hallucination in Large Language Models

    核心要点 针对大模型幻觉问题进行综述,从detection、explanation和mitigation三个方面进行介绍; 对幻觉现象和评估基准进行归纳,分析现有的缓解幻觉的方法,讨论未来潜在的研究发展 相关文献整理:https://github.com/HillZhang1999/llm-hallucination-survey 一、什么是大模型的幻觉 大模型

    2024年02月02日
    浏览(50)
  • A Survey of Large Language Models

    本文是LLM系列的第一篇文章,针对《A Survey of Large Language Models》的翻译。 自从20世纪50年代提出图灵测试以来,人类一直在探索通过机器掌握语言智能。语言本质上是一个由语法规则控制的复杂的人类表达系统。开发能够理解和掌握语言的人工智能算法是一个重大挑战。在过

    2024年02月09日
    浏览(60)
  • LLMs:《A Survey on Evaluation of Large Language Models大型语言模型评估综述》理解智能本质(具备推理能力)、AI评估的重要性(识别当前算法的局限性+设

    LLMs:《A Survey on Evaluation of Large Language Models大型语言模型评估综述》翻译与解读 导读 :该文章首先介绍了人工智能(AI)对机器智能的专注,并探讨了评估AI模型的方法。随后,重点介绍了大语言模型(LLMs)的背景和特点,以及它们在自然语言处理、推理、生成等各类任务中

    2024年02月03日
    浏览(58)
  • LM-INFINITE: SIMPLE ON-THE-FLY LENGTH GENERALIZATION FOR LARGE LANGUAGE MODELS

    本文是LLM系列文章,针对《LM-INFINITE: SIMPLE ON-THE-FLY LENGTH GENERALIZATION FOR LARGE LANGUAGE MODELS》的翻译。 近年来,基于Transformer的大型语言模型(LLM)在各个领域的性能都有了显著的进步。随着这些LLM被部署用于越来越复杂的任务,它们通常需要进行更长的推理过程或理解更大的上

    2024年02月10日
    浏览(34)
  • 论文阅读 A Survey of Large Language Models 3

    为了检验LLM的有效性和优越性,大量的任务和基准被用来进行实证评估和分析。我们首先介绍了LLM语言生成和理解的三种基本评估任务,然后介绍了LLM具有更复杂设置或目标的几个高级任务,最后讨论了现有的基准和实证分析。 在这一部分中,我们主要关注LLM的三种评估任务

    2024年02月13日
    浏览(45)
  • Aligning Large Language Models with Human: A Survey

    本文也是LLM相关的综述文章,针对《Aligning Large Language Models with Human: A Survey》的翻译。 在大量文本语料库上训练的大型语言模型(LLM)已成为一系列自然语言处理(NLP)任务的领先解决方案。尽管这些模型具有显著的性能,但它们容易受到某些限制,如误解人类指令、生成潜

    2024年02月14日
    浏览(46)
  • 大模型 LLM 综述, A Survey of Large Language Models

    一般认为NLP领域的大模型=10 Billion参数(也有人认为是6B、7B, 工业界用, 开始展现涌现能力); 经典大模型有GPT-3、BLOOM、Flan-T5、GPT-NeoX、OPT、GLM-130B、PaLM、LaMDA、LLaMA等; 大模型时间线, 图来自A Survey of Large Language Models,下同。 2.1 涌现 涌现, emerge(abilities), 即一般指在大模型中出现

    2024年02月08日
    浏览(57)
  • 大型语言模型综述,非常详细,格局打开!A Survey of Large Language Models

    返回论文和资料目录 论文地址 项目地址 讲得通俗易懂,且格局拉满!基本覆盖了自ChatGPT以来的AI比较火的事件,还多次提到强人工智能AGI(人工通用智能)。对近几年的大型语言模型( Large Language Models)进行了详细介绍。非常建议感兴趣大模型和强人工智能的读者阅读!!

    2024年02月08日
    浏览(52)
  • A Survey on Large Language Model based Autonomous Agents

    本文是LLM系列的文章,针对《A Survey on Large Language Model based Autonomous Agents》的翻译。 自动代理一直是学术界的一个突出研究课题。该领域先前的研究通常集中在孤立环境中训练知识有限的智能体,这与人类的学习过程有很大差异,从而使智能体难以实现类似人类的决策。最近

    2024年02月11日
    浏览(36)
  • 视频理解大模型调研论文《Video Understanding with Large Language Models: A Survey》简要介绍

    本文是关于综述论文《Video Understanding with Large Language Models: A Survey》的部分介绍。文章调研了将视频理解和大语言模型结合的最新技术,从任务、方法、评价、应用等方面对视频大语言模型进行介绍。本文写于2024年4月。 有关本专栏的更多内容,请参考大语言模型论文调研专

    2024年04月26日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包