如何使用NLP库解析Python中的文本

这篇具有很好参考价值的文章主要介绍了如何使用NLP库解析Python中的文本。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Python是一种强大的面向对象的编程(object-oriented programming,OOP)语言,在人工智能领域有着广泛的用途。正是鉴于其实用性,以Google为首的大型科技公司,已经对其开发了Tensorflow等代码库,帮助人们利用强大的机器学习算法与模型,来实现各种应用目的,其中不乏各种“手语”解析器、摩托车头盔检测器、以及各种物品识别器。

而NLP(natural language processing,自然语言处理)是所有与理解和操纵自然语言相关的人工智能活动的总称。在Python中,就有一种被称为Transformers的机器学习模型,可被用于获取文本,并将文本分解为不同的组件,进而识别出其中的重要部分。接下来,我们就来讨论一下作为深度学习模型的Transformer,是如何解析文本的。

一、如何使用Transformer库在Python中解析文本?

在开始之前,先需要拥有一个Google帐户。为了省去在自己的计算机上安装Python、其依赖项、以及IDE(integrated development environment,集成开发环境)的麻烦,我们使用免费的云服务环境-Google Colab笔记本,以便与不同的人使用Python进行协作。同时,由于AI代码库本身体量较大,并且具有较多的依赖项,因此云端环境的使用,可以有效地节省它们对于硬盘空间的占用。

1.安装所需的库

首先,我们需要安装如下四个代码库。打开Colab笔记本,并在第一个代码单元格中输入以下内容:

!pip install transformers

!pip install torch

!pip install sentencepiece

!pip install newspaper3k

在继续之前,让我们稍微了解一下这些命令。如你所知:

  • “Transformers”是可被用于解析文本的深度学习模型。
  • “Torch”提供了深度学习的算法。
  • “Sentencepeice”可被用于“标记化”(组件分解)文本。
  • “Newspaper3k”是一个网络抓取库,可用于从互联网导入文章(文字内容)。

此时,你的屏幕会显示如下内容:

如何使用NLP库解析Python中的文本,自然语言处理,python,人工智能

2.导入文章

为了导入文章,你必须提供其对应的URL。接着,你需要输入如下命令,来下载并解析文章,以便我们稍后对其进行进一步的标记。

如何使用NLP库解析Python中的文本,自然语言处理,python,人工智能

在完成后,我们将进入第3步。

3.标记文章

我们需要从转换库中,导入自动分词器,然后使用T5模型(T5是一种机器学习模型),可用于文本到文本(text-to-text)的转换(在此我们可用于解析),进而生成解析的文本。下图展示了需要为此效果输入的代码。

如何使用NLP库解析Python中的文本,自然语言处理,python,人工智能

4.解析文章

为了解析这篇文章,你需要创建一个特定的函数。此函数能够接受已标记的文章,并且单独解析每个句子。然后,在输出之前,它会将各个句子重新连接到一起。

如何使用NLP库解析Python中的文本,自然语言处理,python,人工智能

下图展示了已解析文本的输出:

如何使用NLP库解析Python中的文本,自然语言处理,python,人工智能

你可以手动将其复制到文本文件中,以增强可读性。

这便是使用NLP库解析Python中文本的一种方式。不过,这是一种相当复杂且繁琐的方式,尤其是对于那些不熟悉AI和Python的人来说,更是如此。此时,你一定会想到,是否有一些在线解析工具,来达到该目的呢?

二、可用于在线解析的免费工具

1.Prepostseo

Prepostseo提供了可用于各种目的且非常实用的解析工具。由于可以被免费使用,因此你无需注册任何类型的帐户,即可流畅地开始使用它。

使用该工具时,你可以免费地采用如下三种模式:

  • 简单模式
  • 高级模式
  • 流畅模式

其中,在简单模式下,该工具只会进行一些简单的同义化,即:多个词会被一些同义词所代替。

而高级模式改变的不仅仅是单词和解析的结果。如果你不喜欢其默认给出的结果,则可以查看它的可修改之处,并用其他的同义词替换它。

流利模式不仅会改变单词,而且会改变短语、句子结构、以及语气。但是,它并不提供编辑输出的选项。

可见,流畅模式和高级模式是更为有效的模式。若想导入定制的内容,你可以上传待解析的文档,或者直接将文本复制粘贴到输入字段中,并在解析过程完成后,再下载其输出。

该工具的唯一缺点是会有广告在其网页上。

2.Linguix

Linguix是另一个无需注册即可使用的免费解析器。由于其网页上并没有任何广告,因此它对于用户来说十分友好。

虽然Linguix没能提供多种模式,但是当你在解析一个句子时,会得到多个建议,而非仅仅一条。鉴于所有建议都有可能对给定的文本产生不同更改,你可以选择其中最适合的一个。

该工具的操作方法比较简单,你只需要在输入框中写入待解析的文本,然后以突出显示的方式选择它,便可逐句获得相应的弹出建议。

该工具的唯一缺点是:你一次只能解析五个句子。

3.Paraphraser

Paraphraser.io也是一个拥有许多内容优化工具的在线工具包。顾名思义,它主要针对的是解析领域。

该工具同样无需注册便可被免费使用。不过,与前面提到的Prepostseo类似,你在使用过程中,也可能会被其广告所困扰。目前,它提供了两种免费模式:标准模式和流畅模式。其中,标准模式只会使用同义词去替换部分单词,并保持整体句子的结构不变。而流利模式除了会替换单词和短语,还会改变句子的结构,进而让文本更具有可读性。

除了广告,该工具的另一个缺点是:你一次性最多只能解析500个单词。

三、小结

综上所述,在使用NLP库解析Python中的文本时,我们完全可以利用人工智能和深度学习的各种模型,来实现转换。你既可以使用Google Colab的强大云服务功能,使用Transformer库来完成此类繁重的任务;又可以选用各种在线解析工具的各种模式,以不同的方式重写文本。而且,此类工具大多是免费且无需注册。

多看看优秀的工具

太空电梯、MOSS、ChatGPT等,都预兆着2023年注定不会是平凡的一年。任何新的技术都值得推敲,我们应要有这种敏感性。

这几年隐约碰过低代码,目前比较热门,很多大厂都相继加入。

低代码平台概念:通过自动代码生成和可视化编程,只需要少量代码,即可快速搭建各种应用。

到底啥是低代码,在我看来就是拖拉拽,呼呼呼,一通操作,搞出一套能跑的系统,前端,后端,数据库,一把完成。当然这可能是最终目标。

链接:www.jnpfsoft.com/?csdn,如果你感兴趣,也体验一下。

JNPF的优势就在于它能生成前后台代码,提供了极大的灵活性,能够创建更复杂、定制化的应用。它的架构设计也让开发者无需担心底层技术细节,能够专注于应用逻辑和用户体验的开发。文章来源地址https://www.toymoban.com/news/detail-668715.html

到了这里,关于如何使用NLP库解析Python中的文本的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【自然语言处理(NLP)】基于ERNIE语言模型的文本语义匹配

    作者简介 :在校大学生一枚,华为云享专家,阿里云专家博主,腾云先锋(TDP)成员,云曦智划项目总负责人,全国高等学校计算机教学与产业实践资源建设专家委员会(TIPCC)志愿者,以及编程爱好者,期待和大家一起学习,一起进步~ . 博客主页 : ぃ灵彧が的学习日志

    2024年02月10日
    浏览(63)
  • 自然语言处理NLP:文本预处理Text Pre-Processing

    大家好,自然语言处理(NLP)是计算机科学领域与人工智能领域中的一个重要方向,其研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。本文将介绍文本预处理的本质、原理、应用等内容,助力自然语言处理和模型的生成使用。 文本预处理是将原始文本数

    2024年04月26日
    浏览(51)
  • 7个顶级开源数据集来训练自然语言处理(NLP)和文本模型

    推荐:使用 NSDT场景编辑器快速助你搭建可二次编辑的3D应用场景 NLP现在是一个令人兴奋的领域,特别是在像AutoNLP这样的用例中,但很难掌握。开始使用NLP的主要问题是缺乏适当的指导和该领域的过度广度。很容易迷失在各种论文和代码中,试图吸收所有内容。 要意识到的是

    2024年02月13日
    浏览(60)
  • 自然语言处理 Paddle NLP - 文本语义相似度计算(ERNIE-Gram)

    基础 自然语言处理(NLP) 自然语言处理PaddleNLP-词向量应用展示 自然语言处理(NLP)-前预训练时代的自监督学习 自然语言处理PaddleNLP-预训练语言模型及应用 自然语言处理PaddleNLP-文本语义相似度计算(ERNIE-Gram) 自然语言处理PaddleNLP-词法分析技术及其应用 自然语言处理Pa

    2024年02月08日
    浏览(69)
  • 【自然语言处理】NLP入门(一):1、正则表达式与Python中的实现(1):字符串构造、字符串截取

       语言 是一种使用具有共同处理规则的沟通指令的广义概念,这些指令可以通过视觉、声音或触觉等方式传递。语言可以分为自然语言、动物语言和计算机语言。    自然语言 是人类发展过程中形成的一种信息交流方式,它包括口语和书面语,并且反映了人类的思想。

    2024年03月12日
    浏览(146)
  • 自然语言处理NLP:一文了解NLP自然语言处理技术,NLP在生活中的应用,图导加深了解,NLP语料库,NLP开源工具

    目录 1.自然语言处理NLP 1.1 NLP中英对照(双份) 1.2 相关文章  2.NLP语料库

    2024年02月09日
    浏览(64)
  • 自然语言处理技术:NLP句法解析树与可视化方法

    自然语言处理(Natural Language Processing,NLP)句法解析树是一种表示自然语言句子结构的图形化方式。它帮助将句子中的每个词汇和短语按照语法规则连接起来,形成一个树状结构,以便更好地理解句子的语法结构和含义。句法解析树对于理解句子的句法关系、依存关系以及语

    2024年02月12日
    浏览(41)
  • 自然语言处理入门:使用Python和NLTK进行文本预处理

    文章标题:自然语言处理入门:使用Python和NLTK进行文本预处理 简介 自然语言处理(NLP)是人工智能领域的一个重要分支,它致力于使计算机能够理解、分析和生成人类语言。本文将介绍如何使用Python编程语言和NLTK(Natural Language Toolkit)库进行文本预处理,为后续的文本分析

    2024年02月19日
    浏览(55)
  • 【自然语言处理】【深度学习】NLP中的N-gram理解

    N-gram是自然语言处理(NLP)中的一个概念,它描述的是文本中连续的n个项(通常是单词或字符)。这个概念主要用于语言建模和文本分析中。 具体来说: Unigram (1-gram): 包含一个单词的序列,例如句子中的单个单词。 Bigram (2-gram): 包含两个相邻单词的序列。例如,在句子 “

    2024年01月25日
    浏览(57)
  • R语言对医学中的自然语言(NLP)进行机器学习处理(1)

    什么是自然语言(NLP),就是网络中的一些书面文本。对于医疗方面,例如医疗记录、病人反馈、医生业绩评估和社交媒体评论,可以成为帮助临床决策和提高质量的丰富数据来源。如互联网上有基于文本的数据(例如,对医疗保健提供者的社交媒体评论),这些数据我们可以直接下载

    2024年02月04日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包