大数据-玩转数据-Flink营销对账

这篇具有很好参考价值的文章主要介绍了大数据-玩转数据-Flink营销对账。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、说明

在电商网站中,订单的支付作为直接与营销收入挂钩的一环,在业务流程中非常重要。对于订单而言,为了正确控制业务流程,也为了增加用户的支付意愿,网站一般会设置一个支付失效时间,超过一段时间不支付的订单就会被取消。另外,对于订单的支付,我们还应保证用户支付的正确性,这可以通过第三方支付平台的交易数据来做一个实时对账。

二、思路

对于订单支付事件,用户支付完成其实并不算完,我们还得确认平台账户上是否到账了。而往往这会来自不同的日志信息,所以我们要同时读入两条流的数据来做合并处理。

三、数据准备

订单数据从OrderLog.csv中读取,交易数据从ReceiptLog.csv中读取
JavaBean类的准备

四、代码

package com.lyh.flink06;

import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.KeyedCoProcessFunction;
import org.apache.flink.util.Collector;

import java.util.HashMap;
import java.util.Map;

public class Project_Order {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(2);
        SingleOutputStreamOperator<OrderEvent> orderEventString = env.readTextFile("input/OrderLog.csv")
                .map(line -> {
                    String[] data = line.split(",");
                    return new OrderEvent(
                            Long.valueOf(data[0]),
                            data[1],
                            data[2],
                            Long.valueOf(data[3])
                    );
                }).filter(log -> "pay".equals(log.getEventType()));

        SingleOutputStreamOperator<TxEvent> txEventString = env.readTextFile("input/ReceiptLog.csv")
                .map(line -> {
                    String[] data = line.split(",");
                    return new TxEvent(
                            data[0],
                            data[1],
                            Long.valueOf(data[2])
                    );
                });

        orderEventString.connect(txEventString)
                .keyBy(OrderEvent::getTxId,TxEvent::getTxId)
                .process(new KeyedCoProcessFunction<String, OrderEvent, TxEvent, String>() {
                    Map<String,OrderEvent> OrderEventmap = new HashMap<>();
                    Map<String,TxEvent> TxEventmap = new HashMap<>();
                    @Override
                    public void processElement1(OrderEvent value,
                                                Context ctx,
                                                Collector<String> out) throws Exception {
                        TxEvent txEvent = TxEventmap.get(ctx.getCurrentKey());
                        if (txEvent != null) {
                            out.collect("订单" + value.getOrderId() + "对账成功");
                        }else {
                            OrderEventmap.put(ctx.getCurrentKey(),value);
                        }

                    }

                    @Override
                    public void processElement2(TxEvent value,
                                                Context ctx,
                                                Collector<String> out) throws Exception {
                        OrderEvent orderEvent = OrderEventmap.get(ctx.getCurrentKey());
                        if (orderEvent != null) {
                           out.collect("订单" + orderEvent.getOrderId() + "对账成功");
                        }else {
                            TxEventmap.put(ctx.getCurrentKey(),value);
                        }
                    }
                }).print();
        env.execute();

    }
}

五、结果

大数据-玩转数据-Flink营销对账,大数据-玩转数据-FLINK,大数据,flink文章来源地址https://www.toymoban.com/news/detail-669371.html

到了这里,关于大数据-玩转数据-Flink营销对账的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据-玩转数据-Flink恶意登录监控

    对于网站而言,用户登录并不是频繁的业务操作。如果一个用户短时间内频繁登录失败,就有可能是出现了程序的恶意攻击,比如密码暴力破解。 因此我们考虑,应该对用户的登录失败动作进行统计,具体来说,如果同一用户(可以是不同IP)在2秒之内连续两次登录失败,就

    2024年02月07日
    浏览(41)
  • 大数据-玩转数据-Flink定时器

    基于处理时间或者事件时间处理过一个元素之后, 注册一个定时器, 然后指定的时间执行. Context和OnTimerContext所持有的TimerService对象拥有以下方法: currentProcessingTime(): Long 返回当前处理时间 currentWatermark(): Long 返回当前watermark的时间戳 registerProcessingTimeTimer(timestamp: Long): Unit 会注

    2024年02月10日
    浏览(36)
  • 大数据-玩转数据-Flink 网站UV统计

    在实际应用中,我们往往会关注,到底有多少不同的用户访问了网站,所以另外一个统计流量的重要指标是网站的独立访客数(Unique Visitor,UV)。 对于UserBehavior数据源来说,我们直接可以根据userId来区分不同的用户。 将userid放到SET集合里面,统计集合长度,便可以统计到网

    2024年02月11日
    浏览(45)
  • 大数据-玩转数据-Flink-Transform

    转换算子可以把一个或多个DataStream转成一个新的DataStream.程序可以把多个复杂的转换组合成复杂的数据流拓扑. 2.1、map(映射) 将数据流中的数据进行转换, 形成新的数据流,消费一个元素并产出一个元素 2.2、filter(过滤) 根据指定的规则将满足条件(true)的数据保留,不

    2024年02月13日
    浏览(30)
  • 大数据-玩转数据-Flink状态后端(下)

    每传入一条数据,有状态的算子任务都会读取和更新状态。由于有效的状态访问对于处理数据的低延迟至关重要,因此每个并行任务(子任务)都会在本地维护其状态,以确保快速的状态访问。 状态的存储、访问以及维护,由一个可插入的组件决定,这个组件就叫做状态后端(

    2024年02月09日
    浏览(44)
  • 大数据-玩转数据-Flink时间滚动动窗口

    在流处理应用中,数据是连续不断的,因此我们不可能等到所有数据都到了才开始处理。当然我们可以每来一个消息就处理一次,但是有时我们需要做一些聚合类的处理,例如:在过去的1分钟内有多少用户点击了我们的网页。在这种情况下,我们必须定义一个窗口,用来收集

    2024年02月11日
    浏览(45)
  • 大数据-玩转数据-Flink 海量数据实时去重

    大数据|阿里实时计算|Flink 借助redis的Set,需要频繁连接Redis,如果数据量过大, 对redis的内存也是一种压力;使用Flink的MapState,如果数据量过大, 状态后端最好选择 RocksDBStateBackend; 使用布隆过滤器,布隆过滤器可以大大减少存储的数据的数据量。 如果想判断一个元素是不

    2024年02月07日
    浏览(36)
  • 大数据-玩转数据-FLINK-从kafka消费数据

    大数据-玩转数据-Kafka安装 运行本段代码,等待kafka产生数据进行消费。

    2024年02月14日
    浏览(36)
  • 大数据-玩转数据-Flink-Transform(上)

    转换算子可以把一个或多个DataStream转成一个新的DataStream.程序可以把多个复杂的转换组合成复杂的数据流拓扑. 2.1、map(映射) 将数据流中的数据进行转换, 形成新的数据流,消费一个元素并产出一个元素 2.2、filter(过滤) 根据指定的规则将满足条件(true)的数据保留,不

    2024年02月14日
    浏览(30)
  • 玩转数据-大数据-Flink SQL 中的时间属性

    时间属性是大数据中的一个重要方面,像窗口(在 Table API 和 SQL )这种基于时间的操作,需要有时间信息。我们可以通过时间属性来更加灵活高效地处理数据,下面我们通过处理时间和事件时间来探讨一下Flink SQL 时间属性。 2.1、准备WaterSensor类,方便使用 2.2、DataStream 到

    2024年02月07日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包