Grounded Language-Image Pre-training论文笔记

这篇具有很好参考价值的文章主要介绍了Grounded Language-Image Pre-training论文笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Title:Grounded Language-Image Pre-training
Code

1. 背景

目前的视觉识别任务通常是在一个预先定义好的类别范围内进行的,这样限制了其在真实场景中的扩展。CLIP的出现打破了这一限制,CLIP利用image-text对进行训练,从而使得模型可以根据文字prompt识别任意类别。CLIP适用于分类任务,而GLIP尝试将这一技术应用于目标检测等更加复杂的任务中。

在本文中,作者提出了phrase grounding的概念,意思是让模型去学习图片和句子短语之间更加精细的联系。

GLIP的主要贡献如下:

  • 将phrase grounding和目标检测任务统一,将image和text prompt同时输入到目标检测网络中,prompt中带有图片中所有类别的详细描述。
  • GLIP采用了丰富的预训练数据,使得它的预训练模型可以更轻松地迁移到下游任务中。预训练的GLIP在COCO数据集上finetune之后达到了60.8 AP(2017val)和61.5AP(test-dev),超过了目前的SOTA模型。
  • One model for all,GLIP可以迁移到多样化的任务中。它在不使用额外标注的情况下,在coco val2017和LVIS数据集上分别达到了49.8AP和26.9AP。

2. 方法

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读

(1)Unified Formulation

传统目标检测

一个典型的目标检测网络的结构如下:

  • 将图片输入到visual encoder E n c I Enc_I EncI 中提取特征 O O O,visual encoder通常是CNN、Transformer等backbone;
  • 将特征 O O O 输入到classifier C C C 和bbox regressor R R R 中得到分类结果和bbox回归结果;
  • 分别计算分类损失和框回归损失,整体Loss公式: L = L c l s + L l o c L=L_{cls}+L_{loc} L=Lcls+Lloc

上述计算分类Loss的流程可以用公式表达为:

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读
其中 T T T 代表target; W W W 是分类器参数。

grounding目标检测

与上述分类器不同,GLIP将目标检测任务与phrash grounding统一,将目标检测中的每个region/bboxtext prompt进行匹配以实现分类效果。

举例来说,假设我们有[person, bicycle, car, ..., toothbrush]等类别,我们可以设计一个这样的prompt,其中每一个类别名字都是一个phrase:

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读

grounding模型中的分类流程可以用公式表示为:

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读
其中 P P P 是language encoder得到的文字特征, S g r o u n d S_{ground} Sground 的计算过程如下如图示:计算图像的region和prompt中的word之间的对齐分数:
Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读

然而,在计算对齐分数时,一个短语(phrase)可能包含多个word tokens,这就导致一个类别可能对应多个子单词(sub-words)。针对这个问题,本文是这样做的:当这些sub-words的phrase与目标region匹配时,每个positive sub-word都与目标region所匹配。**例如,吹风机的phrase是“Hair dryer”,那么吹风机的region就会与“Hair”和“dryer”这两个词都匹配,**如下图所示:

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读

(2)Language-Aware Deep Fusion

在CLIP等算法中,image和text特征通常只在最后用于计算对比学习的loss,我们称这样的算法为late-fusion model。在本文中,作者在image和text特征之间引入了更深层次的融合(deep fusion),在最后几个encoder layer中进行了image和text的信息融合,如下图所示:

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读

deep-fused encoder可以用以下公式来表示:

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读
其中, X-MHA代表跨模态多头注意力模块(multi-head attention module),L代表DyHead中DyHeadModule的个数,BERTLayer是额外添加在预训练BERT模型之上的层, O 0 O^0 O0 是vision backbone提取的图像特征, P 0 P^0 P0 是language backbone提取的文字特征。

X-MHA是用于跨模态信息融合的关键模块 (cross attention) ,它的公式如下所示:
Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读
deep-fused有两个优点:

  • 提升了phrase grounding的表现;
  • 使得图像特征的学习与文字特征产生关联,从而让text prompt可以影响到检测模型的预测。

(3)Pre-training with Scalable Semantic-Rich Data

  • 同时使用目标检测和grounding数据;
  • 另外通过利用gold data训练教师GLIP,使用这个教师模型来预测24M web image-text数据,为image caption数据得到了检测伪标签;
  • 也就是说,GLIP可以同时利用目标检测数据集,grounding数据集,image caption数据集,极大丰富了训练数据量;

3. 实验

(1)数据集简介

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读

  • COCO:目标检测数据集,包含80个常见对象类别;
  • LVIS:目标检测和实例分割数据集,涵盖1203个对象类别;
  • Object365:是一个大规模的目标检测数据集,总共包含63万张图像,覆盖365个类别,高达1000万框数;
    Microsoft COCO Captions 数据集:该数据集为超过 33 万张图片提供了超过 150 万条人工生成的图片描述。
  • Flickr30k:给定了31783张图像以及158915个文本注释,一张图片对应5个注释,并将它们与 276K 个手动标注的边界框关联起来。
  • Visual Genome(VG)是斯坦福大学李飞飞组于2016年发布的大规模图片语义理解数据集,数据集汇总最主要的构成是Region Description,每个region/bbox都有与其对应的一句自然语言描述。
  • GQA数据集包含22,669,678个问题和113,018张图片,数据集中覆盖的词汇量有3,097个,答案类型有1,878个,同时也包含对应的bbox注释;
  • Conceptual Captions (CC)是一个数据集,由约 330 万张带有字幕注释的图像组成。
  • SBU Captions数据集最初将图像字幕作为一个检索任务,包含 100 万个图片网址 + 标题对。

最后使用的数据集有:

  • FourODs (2.66M data): 4 detection datasets including Objects365, OpenImages, Visual Genome (excluding COCO images), and ImageNetBoxes
  • GoldG (0.8M): human-annotated gold grounding data curated by
    MDETR, including Flickr30K, VG Caption and GQA.
  • Cap4M / Cap24M

(2)GLIP消融实验

作者设计了多个版本的GLIP用于对比试验:

  • GLIP-T(A):基于SoTA模型Dynamic Head,将其中的分类损失替换为GLIP的alignment loss,预训练数据为Objects365(66万人工标注数据);
  • GLIP-T(B):在GLIP-T(A)的基础上加入deep fusion;
  • GLIP-T©:在预训练数据中加入GoldG(80万人工标注数据);
  • GLIP-T:加入更多数据:Cap4M(400万网上爬取的数据);
  • GLIP-L:基于Swin-Large,并采用更大量的数据集,包含:FourODs(2.66M)、GoldG(0.8M)、Cap24M(24M);

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读

由于 Objects365 覆盖了 COCO 中的所有类别,因此Objects365 预训练的 DyHead-T 在COCO上表现优异,达到了43.6AP; 若将模型重新构建为grounding模型,性能略有下降 (GLIP-T (A)); 添加深度融合将性能提升 2AP (GLIP-T (B)); GoldG数据对性能的提升贡献最大,GLIP-T © 达到 46.7 AP。 虽然添加图像-文本数据对 COCO 有轻微或没有改进(GLIP-T 与 GLIP-T ©),作者发现它对于推广到稀有种类至关重要,并在LVIS 实验中进一步展示了这一现象。

Grounded Language-Image Pre-training论文笔记,# 目标检测,论文阅读

Gold grounding数据使 Mini-Val APr (GLIP-T© 与 GLIP-T (B)) 相比提高了 4.2 个点。这进一步表明grounding数据对性能的提升有显著的贡献。另外,添加图像-文本数据进一步提高了 3.1 个点的性能。因此,基础数据的语义丰富性可能有助于模型识别稀有物体。文章来源地址https://www.toymoban.com/news/detail-669772.html

参考

  • 如何看待微软的Grounded Language-Image Pre-training(GLIP)?

到了这里,关于Grounded Language-Image Pre-training论文笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • BEiT: BERT Pre-Training of Image Transformers 论文笔记

    论文名称: BEiT: BERT Pre-Training of Image Transformers 论文地址:2106.08254] BEiT: BERT Pre-Training of Image Transformers (arxiv.org) 代码地址:unilm/beit at master · microsoft/unilm (github.com) 作者讲解:BiLiBiLi 作者PPT:文章资源 首先展示的是我基于这个算法搭建的网页 demo ,欢迎体验。https://wangqvq-be

    2024年02月11日
    浏览(30)
  • 【NLP经典论文精读】Improving Language Understanding by Generative Pre-Training

    chatGPT的初代工作,可以说没有GPT,就没有现在的大模型百家争鸣,本篇文章回顾这篇经典论文,思考作者是如何根据前者的工作在思想上进行创新,从而得到通用的模型架构。 Paper: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf Code: https://github.com/huggingface/transformersGPT 自然语言理解

    2024年02月15日
    浏览(292)
  • 论文阅读《Vision-Language Pre-Training with Triple Contrastive Learning》

    本文是2022年CVPR上的一篇 多模态 论文,利用对比学习和动量来进行图片与文本信息的上游预训练。 作者提出问题 简单的跨模态比对模型无法确保来自同一模态的相似输入保持相似。(模态内部语义信息损失) 全局互信息最大化的操作没有考虑局部信息和结构信息。 对于上

    2024年04月13日
    浏览(36)
  • ChatGPT1论文解读《Improving Language Understanding by Generative Pre-Training》

    以下是我阅读完整篇论文做的个人总结,基本包含了ChatGPT1设计的完整框架思路,可以仅看【论文总结】章节。 在GPT1实现的核心架构中,包含两个阶段。 第一阶段 在 第一阶段 基于一个包含 7000本书籍 内容的海量 未标注文本数据集 进行无监督预训练,该阶段引入了一种 T

    2024年02月05日
    浏览(35)
  • Re58:读论文 REALM: Retrieval-Augmented Language Model Pre-Training

    诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文名称:REALM: Retrieval-Augmented Language Model Pre-Training 模型名称:Retrieval-Augmented Language Model pre-training (REALM) 本文是2020年ICML论文,作者来自谷歌,关注RAG+LLM。目标是解决纯用LM参数储存知识就得让LM尺寸越来

    2024年02月04日
    浏览(33)
  • 【论文精读】BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

    自然语言处理(Natural Language Processing,NLP)领域内的 预训练语言模型 ,包括基于RNN的ELMo和ULMFiT,基于Transformer的OpenAI GPT及Google BERT等。预训练语言模型的成功,证明了我们可以从海量的无标注文本中学到潜在的语义信息,而无需为每一项下游NLP任务单独标注大量训练数据。

    2024年02月14日
    浏览(44)
  • 论文笔记--ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding

    标题:ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding 作者:Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian, Hua Wu, Haifeng Wang 日期:2020 期刊:AAAI   文章给出了一种新的NLP预训练模型的训练方法,并提出了ERNIE2.0(Enhanced Representation through kNowledge IntErgration)。ERNIE2.0在ERNIE

    2024年02月09日
    浏览(41)
  • 跨模态检索论文阅读:(PTP)Position-guided Text Prompt for Vision-Language Pre-training

    (PTP)Position-guided Text Prompt for Vision-Language Pre-training 视觉语言预训练的位置引导文本提示 视觉语言预训练(VLP)已经显示出将图像和文本对统一起来的能力,促进了各种跨模态的学习任务。 然而,我们注意到,VLP模型往往缺乏视觉基础/定位能力,这对许多下游任务如视觉推理至

    2024年02月11日
    浏览(34)
  • 论文阅读【自然语言处理-预训练模型2】BART:Denoising Sequence-to-Sequence Pre-training for Natural Language Generation

    BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension BART: 用于自然语言生成、翻译和理解的去噪序列对序列预训练 【机构】:Facebook AI 【作者】:Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoye

    2024年02月03日
    浏览(40)
  • GPT(Generative Pre-Training)论文解读及实现(一)

    Given an unsupervised corpus of tokens U = {u1, . . . , un}, we use a standard language modeling objective to maximize the following likelihood: 在给定语料上下文环境下,目标时最大化下面的语言模型,即在给定前 i-1个词和参数θ前提下,使第 i 个词出现的概率最大。 we use a multi-layer Transformer decoder [34] for

    2024年02月15日
    浏览(146)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包