缓存穿透、缓存击穿和缓存雪崩

这篇具有很好参考价值的文章主要介绍了缓存穿透、缓存击穿和缓存雪崩。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

👏作者简介:大家好,我是爱发博客的嗯哼,爱好Java的小菜鸟
🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
📝社区论坛:希望大家能加入社区共同进步
🧑‍💼个人博客:智慧笔记
📕系列专栏:Redis

前言

一聊到redis,必不可少的就是缓存三兄弟的问题,即缓存穿透、缓存击穿和缓存雪崩,这三个问题在业务场景中相对来说比较常见的,也是比较基础的三种问题。那么这三种问题是如何引起的,并且应该如何解决,就是本章探讨的话题。


一、问题前引

大家都知道,Redis一般搭配MySQL来使用,来充当缓存处理一些业务数据。但为什么要Redis用来充当缓存呢,不能直接使用MySQL吗?

当然是可以的,但是对于一些请求量大并发次数高的场景就有问题了。

MySQL是基于磁盘的,请求查询速度偏慢,所以就需要一个基于内存的速度快的工具来缓存这些数据,Redis就应运而生了。而且当大量请求到来时,只有MySQL的话,有可能承受不住大量请求导致MySQL宕机,此时就会影响到整个服务器,所以Redis此时又充当了一个保护缓冲的作用。

二、缓存穿透

1. 问题描述

缓存穿透主要体现在穿透两个字上,穿透即为穿过缓存,打到数据库上。

当一个请求访问的时候,此时Redis没有缓存该数据,然后去数据库查询该数据也查询到,说明没有该数据。
缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

此时你或许还不以为然,不就一个空数据吗?多稀罕啊。

但如果该请求是恶意请求,此时无数条请求同时访问,缓存中没有,全部都会打在数据库上,刚好还是类似于

select * from table where name = "李白"

表中有1000万条数据,name字段也没有创建索引。这时候问题是不是就大了?服务器稍微差一点,就会直接宕机。
缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

这时你或许该问了,那该如何解决呢?不要急,机智的程序猿肯定有应对之法。

2. 问题解决

2.1 缓存空数据

如果此时将请求的数据缓存起来,是不是就可以避免请求打到数据库了?

你现在或许又要问了,空数据怎么缓存呢?没错,就是缓存空数据

如果请求的数据查询数据为空的话,就将该数据为空值缓存到Redis中,以后每次请求都直接访问Redis,查询到该数据,直接返回空值。这样就避免恶意请求全部打到数据库了。
缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

2.2 布隆过滤器

不了解布隆过滤器的同学可以看这篇文章硬核 | Redis 布隆(Bloom Filter)过滤器原理与实战

布隆过滤器 (Bloom Filter)是由 Burton Howard Bloom 于 1970 年提出,它是一种 space efficient 的概率型数据结构,用于判断一个元素是否在集合中。

当布隆过滤器说,某个数据存在时,这个数据可能不存在;当布隆过滤器说,某个数据不存在时,那么这个数据一定不存在

哈希表也能用于判断元素是否在集合中,但是布隆过滤器只需要哈希表的 1/8 或 1/4 的空间复杂度就能完成同样的问题。

布隆过滤器可以插入元素,但不可以删除已有元素

其中的元素越多,false positive rate(误报率)越大,但是 false negative (漏报)是不可能的。
布隆过滤器原理

BloomFilter 的算法是,首先分配一块内存空间做 bit 数组,数组的 bit 位初始值全部设为 0。

加入元素时,采用 k 个相互独立的 Hash 函数计算,然后将元素 Hash 映射的 K 个位置全部设置为 1。

检测 key 是否存在,仍然用这 k 个 Hash 函数计算出 k 个位置,如果位置全部为 1,则表明 key 存在,否则不存在。

如下图所示:
缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

三、缓存击穿

1. 问题描述

缓存击穿一般常见于电商场景,在双十一和六一八这种大促活动中,缓存中会缓存一些热点数据,随时都有大量的请求访问这个数据。

当某个时刻这个数据突然过期,大量请求就会集中打到MySQL数据库中。
缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

如何解决这个问题呢?

2. 问题解决

该问题导致的原因是因为该缓存数据过期了,但却有大量请求访问该数据;

有两条思路去解决:

  • 不让该数据过期
  • 不让大量请求访问数据库

2.1 设置逻辑过期

热点数据随时都会有变化,不设置过期时间的话会导致更多问题,不能因此失彼。

但可以换一个思路,在数据过期时无缝衔接一个新数据,在请求看来这就是没有过期时间的一个数据。

缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

此时如果大量请求访问该数据,刚好该数据缓存逻辑过期,但没有设置物理过期时间,所以数据并不会被redis清除。

此时由业务代码去判断,该缓存是否过期,如果过期则获取互斥锁新建一个子线程去访问数据库重新设置缓存,主线程返回过期数据,没有获取互斥锁的都返回过期数据

完整代码如下:

 //逻辑过期
    public Shop queryWithLogicalExpire(Long id) {
        String key = CACHE_SHOP_KEY + id;
        //1.从redis查询商铺缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        //2.判断是否存在
        if (StrUtil.isBlank(shopJson)) {
            //3.未命中
            return null;
        }
        //4.命中,需要先把json反序列化为对象
        RedisData redisData = JSONUtil.toBean(shopJson, RedisData.class);
        Shop shop = (Shop) redisData.getData();
        LocalDateTime expireTime = redisData.getExpireTime();
        //5.判断是否过期
        if (expireTime.isAfter(LocalDateTime.now())) {
            //5.1还未过期
            return shop;
        }
        //5.2已经过期,需要缓存重建
        //6.缓存重建
        //6.1获取互斥锁
        String lockKey = LOCK_SHOP_KEY + id;
        boolean isLock = tryLock(lockKey);
        //6.2判断是否获取锁成功
        if (isLock) {
            // 6.3成功,开启独立线程,实现缓存重建
            CACHE_REBUILD_EXECUTOR.submit(() -> {
                try {
                    //重建缓存
                    this.saveShop2Redis(id, 20L);
                } catch (Exception e) {
                    e.printStackTrace();
                } finally {
                    //释放锁
                    unlock(lockKey);
                }
            });
        }
        //6.4返回过期的店铺信息
        //7.返回
        return shop;
    }

2.2 设置互斥锁

怎么才能不让大量数据去访问数据库呢?

或许大家已经想到了,上面设置逻辑过期用到过的一个功能:互斥锁

缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

请求首先访问缓存,如果命中的话,直接返回该数据。

如果未命中的话,则去获取互斥锁,获取成功则查询数据库重新设置缓存,获取失败,则重试获取缓存数据

完整代码如下:

/**
     * 通过互斥锁机制查询商铺信息
     * @param key
     */
    private Shop queryShopWithMutex(String key, String cityCode) {
        Shop shop = null;
        // 1.查询缓存
        String shopJson = stringRedisTemplate.opsForValue().get(key);
        // 2.判断缓存是否有数据
        if (StringUtils.isNotBlank(shopJson)) {
            // 3.有,则返回
            shop = JSONObject.parseObject(shopJson, Shop.class);
            return shop;
        }
        // 4.无,则获取互斥锁
        String lockKey = RedisConstants.LOCK_SHOP_KEY + shopCode;
        Boolean isLock = tryLock(lockKey);
        // 5.判断获取锁是否成功
        try {
            if (!isLock) {
                // 6.获取失败, 休眠并重试
                Thread.sleep(100);
                return queryShopWithMutex(key, shopCode);
            }
            // 7.获取成功, 查询数据库
            shop = baseMapper.getByCode(shopCode);
            // 8.判断数据库是否有数据
            if (shop == null) {
                // 9.无,则将空数据写入redis
                stringRedisTemplate.opsForValue().set(key, "", RedisConstants.CACHE_NULL_TTL, TimeUnit.MINUTES);
                return null;
            }
            // 10.有,则将数据写入redis
            stringRedisTemplate.opsForValue().set(key, JSONObject.toJSONString(shop), RedisConstants.CACHE_SHOP_TTL, TimeUnit.MINUTES);
        } catch (Exception e) {
            throw new RuntimeException(e);
        } finally {
            // 11.释放锁
            unLock(lockKey);
        }
        // 12.返回数据
        return shop;
    }

关于两种方案,各有各的优缺点

  • 逻辑过期: 及时性高,但数据不是最新数据,适合最终一致性的业务
  • 互斥锁: 一致性高,但会有数据延迟,适合强一致性的业务

四、缓存雪崩

1. 问题描述

缓存雪崩可以简单的理解为大范围的缓存击穿。

有两个可能引起缓存雪崩问题:

  • 有大量的热门缓存同时失效。会导致大量的请求,访问数据库。而数据库很有可能因为扛不住压力,而直接挂掉。
  • 缓存服务器down机了,可能是机器硬件问题,或者机房网络问题。造成了整个缓存的不可用。
    缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

2. 问题解决

2.1 设置随机过期时间

为了解决缓存雪崩问题,我们首先要尽量避免缓存同时失效的情况发生。

这就要求我们不要设置相同的过期时间。

可以在设置的过期时间基础上,再加个1~60秒的随机数。

实际过期时间 = 过期时间 + 1~60秒的随机数

这样即使在高并发的情况下,多个请求同时设置过期时间,由于有随机数的存在,也不会出现太多相同的过期key。

2.2 缓存高可用

针对缓存服务器down机的情况,在前期做系统设计时,可以做一些高可用架构

可以使用哨兵机制或者集群模式,当一个Redis宕机,随时会有一个Redis补充上来,避免一个Redis宕机而导致大量请求去访问数据库,而使数据库压力过载。

比如使用哨兵模式之后,当某个master服务下线时,自动将该master下的某个slave服务升级为master服务,替代已下线的master服务继续处理请求。
缓存穿透、缓存击穿和缓存雪崩,Redis,缓存,redis,架构

五、总结

缓存穿透、缓存击穿和缓存雪崩是三种与缓存相关的常见问题,它们的概念和影响有所不同。

关于Redis缓存三兄弟的问题及解决主要就是以下几个方面:

缓存穿透:

  • 缓存穿透指的是对于一个不存在于缓存和数据库中的数据的请求,每次请求都会穿过缓存层直接访问数据库。

  • 恶意的攻击者可以通过构造不存在的数据请求,导致大量请求直接访问数据库,增加数据库负载压力。

  • 解决缓存穿透可以采用存储空数据和合适的校验技术,例如使用布隆过滤器等技术,在缓存层进行初步过滤,避免无效请求直接访问数据库。

缓存击穿:

  • 缓存击穿指的是在高并发情况下,一个热点数据过期或失效时,大量请求同时涌入数据库,造成数据库压力激增。

  • 由于热点数据没有命中缓存,而直接访问数据库,使得缓存无法发挥作用,增加了数据库的负载。

  • 解决缓存击穿可以采取设置热点数据永不过期,或者使用互斥锁等机制来控制只有一个线程去加载数据。

缓存雪崩:

  • 缓存雪崩指的是在某个时间点,缓存中的大量数据同时失效或过期或者缓存服务宕机,导致大量请求直接访问后端数据库,造成数据库压力过大。
  • 当缓存中的数据集中过期或失效时,没有缓存可用,导致大量请求直接访问数据库,可能引起数据库负载激增甚至崩溃。
  • 解决缓存雪崩可以采用合理的缓存失效时间设置、使用高可用架构等方式来减少缓存失效的风险。

当然能解决的方式有很多,这里只是列举出来常见的解决方法。如果有更好的建议可以发在评论区。


结语

每个人都有自己独特的才华和潜能,在这个广袤的世界上,你的存在是有意义的。无论你是谁,你的背景如何,你所处的环境怎样,只要你敢于跨出舒适区,付出努力,追求卓越,你就能够开创属于自己的辉煌。

我们下期见。

每一次努力都是一次进步,即使进展缓慢,也要坚持不懈。

往期文章推荐文章来源地址https://www.toymoban.com/news/detail-670038.html

  • 消息中间件相关面试题
  • Java集合相关面试题
  • Java集合详解
  • 微服务相关面试题
  • redis相关面试题
  • 图解 Paxos 算法
  • Spring相关面试题
  • Mysql相关面试题

到了这里,关于缓存穿透、缓存击穿和缓存雪崩的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Redis的缓存穿透,缓存击穿,缓存雪崩

    什么是缓存穿透? 缓存穿透说简单点就是大量请求的 key 是不合理的, 根本不存在于缓存中,也不存在于数据库中 。这就导致这些请求直接到了数据库上,根本没有经过缓存这一层,对数据库造成了巨大的压力,可能直接就被这么多请求弄宕机了。 eg:某个黑客故意制造一

    2024年02月10日
    浏览(33)
  • 68、Redis:缓存雪崩、缓存穿透、缓存击穿

    缓存雪崩是指缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。 缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生 给每一个缓存数据增加相应的缓存标记,记录缓存是否失效,如果缓存标记失效

    2024年02月16日
    浏览(36)
  • Redis之缓存穿透+缓存雪崩+缓存击穿

    在生产环境中,会因为很多的原因造成访问请求绕过了缓存,都需要访问数据库持久层,虽然对Redsi缓存服务器不会造成影响,但是数据库的负载就会增大,使缓存的作用降低   缓存穿透是指查询一个根本不存在的数据,缓存层和持久层都不会命中。在日常工作中出于容错

    2023年04月09日
    浏览(58)
  • Redis 缓存雪崩、穿透、击穿、预热

            在实际工程中,Redis 缓存问题常伴随高并发场景出现。例如, 电商大促、活动报名、突发新闻 时,由于缓存失效导致大量请求访问数据库,导致 雪崩 、 击穿 、 穿透 等问题。因此,新系统上线前需 预热 缓存,以应对高并发,减轻数据库压力。本章主要围绕这

    2024年04月12日
    浏览(48)
  • redis缓存雪崩、穿透和击穿

    缓存雪崩   对于系统 A,假设每天高峰期每秒 5000 个请求,本来缓存在高峰期可以扛住每秒 4000 个请求,但是缓存机器意外发生了全盘宕机或者大量缓存集中在某一个时间段失效。缓存挂了,此时 1 秒 5000 个请求全部落数据库,数据库必然扛不住,它会报一下警,然后就挂了

    2024年01月22日
    浏览(40)
  • Redis 缓存穿透击穿和雪崩

             Redis 缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也带来了一些问题。其中,最要害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对数据的一致性要求很高,那么就不能使用缓存。 2.1 概念    

    2024年02月10日
    浏览(47)
  • Redis缓存预热-缓存穿透-缓存雪崩-缓存击穿

    什么叫缓存穿透? 模拟一个场景: 前端用户发送请求获取数据,后端首先会在缓存Redis中查询,如果能查到数据,则直接返回.如果缓存中查不到数据,则要去数据库查询,如果数据库有,将数据保存到Redis缓存中并且返回用户数据.如果数据库没有则返回null; 这个缓存穿透的问题就是这个

    2024年03月09日
    浏览(42)
  • Redis 缓存预热+缓存雪崩+缓存击穿+缓存穿透

    面试题: 缓存预热、雪萌、穿透、击穿分别是什么?你遇到过那几个情况? 缓存预热你是怎么做的? 如何造免或者减少缓存雪崩? 穿透和击穿有什么区别?他两是一个意思还是载然不同? 穿适和击穿你有什么解决方案?如何避免? 假如出现了缓存不一致,你有哪些修补方

    2024年02月10日
    浏览(68)
  • Redis(缓存预热,缓存雪崩,缓存击穿,缓存穿透)

    目录 一、缓存预热 二、缓存雪崩 三、缓存击穿 四、缓存穿透   开过车的都知道,冬天的时候启动我们的小汽车之后不要直接驾驶,先让车子发动机预热一段时间再启动。缓存预热是一样的道理。 缓存预热就是系统启动前,提前将相关的缓存数据直接加载到缓存系统。避免

    2024年02月10日
    浏览(46)
  • Redis的缓存穿透、缓存击穿和缓存雪崩

    目录 一、解释说明 二、缓存穿透  1. 什么是缓存穿透?  2. 常见的两种解决方案  (1)缓存空对象  (2)布隆过滤 3. 编码解决商品查询的缓存穿透问题 三、缓存击穿  1.  什么是缓存击穿?  2、缓存击穿解决方案(2种) (1)互斥锁 (2)逻辑过期  3.  互斥锁与逻辑过

    2024年02月14日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包