C++最易读手撸神经网络两隐藏层(任意Nodes每层)梯度下降230820a

这篇具有很好参考价值的文章主要介绍了C++最易读手撸神经网络两隐藏层(任意Nodes每层)梯度下降230820a。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

这是史上最简单、清晰,最易读的……
C++语言编写的 带正向传播、反向传播(Forward ……和Back Propagation)……任意Nodes数的人工神经元神经网络……。

大一学生、甚至中学生可以读懂。

适合于,没学过高数的程序员……照猫画虎编写人工智能、深度学习之神经网络,梯度下降……


著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

“我在网上看到过很多神经网络的实现方法,但这一篇是最简单、最清晰的。”

一位来自Umass的华人小哥Along Asong,写了篇神经网络入门教程,在线代码网站Repl.it联合创始人Amjad Masad看完以后,给予如是评价。文章来源地址https://www.toymoban.com/news/detail-670433.html

// c++神经网络手撸20梯度下降22_230820a.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
#include<iostream>
#include<vector>
#include<iomanip> //std::setprecision
#include<sstream> //std::getline std::stof()

using namespace std;
//
float Loss误差损失之和001 = 0.0;

class NN神经网络NN {

private: int inputNode输入层之节点数s, hidden01Node隐藏层01结点数s, hidden22Nodes, outputNode输出层结点数s;

       vector<vector<float>> 输入层到第1隐藏层之权重矩阵, 隐藏层1到第二隐藏层2之权重矩阵1to2, 隐藏22到输出层de权重矩阵; //这些变量为矩阵
       vector<float> 隐藏层1偏置1, 隐藏层2偏置2, O输出偏置o;
       vector<float>隐藏层1数据1, 隐藏层2数据2, 输出数据output;

       void initLayer每一层的WeightsAndBiases(vector<vector<float>>& weights权重, vector<float>& biases偏置)
       {
           for (size_t i = 0; i < weights权重.size(); ++i) {//for110i
               for (size_t j = 0; j < weights权重[0].size(); ++j) { weights权重[i][j] = ((rand() % 2) - 1) / 1.0; }
               biases偏置[i] = ((rand() % 2) - 1) / 1.0;

           }//for110i
       }//void initLayerWeightsAndBiases(

       void initWeightsAndBiases初始化权重和偏置矩阵() {
           initLayer每一层的WeightsAndBiases(输入层到第1隐藏层之权重矩阵, 隐藏层1偏置1);
           initLayer每一层的WeightsAndBiases(隐藏层1到第二隐藏层2之权重矩阵1to2, 隐藏层2偏置2);
           initLayer每一层的WeightsAndBiases(隐藏22到输出层de权重矩阵 , O输出偏置o);
       }

       //激活函数-激活的过程
        vector<float> activate(const  vector<float>& inputs, const  vector< vector<float>>& weights, const  vector<float>& biases) {
            vector<float> layer_output(weights.size(), 0.0);
               for (size_t i = 0; i < weights.size(); i++) {
                       for (size_t j = 0; j < inputs.size(); j++) {
                           layer_output[i] += inputs[j] * weights[i][j];
                       }//for220j
                   layer_output[i] += biases[i];
                   layer_output[i] = sigmoid(layer_output[i]);
               }//for110i
           return layer_output;
       }//vector<float> activate

        //subtract求差:两个 向量的差
        std::vector<float> subtract(const std::vector<float>& a, const std::vector<float>& b) {
            std::vector<float> result(a.size(), 0.0);
            for (size_t i = 0; i < a.size(); i++) {
                result[i] = a[i] - b[i];
            }
            return result;
        }//vector<float>subtract

         //dotT点乘
        std::vector<float> dotT(const std::vector<float>& a, const std::vector<std::vector<float>>& b) {
            std::vector<float> result(b[0].size(), 0.0);
            for (size_t i = 0; i < b[0].size(); i++) {
                for (size_t j = 0; j < a.size(); j++) {
                    result[i] += a[j] * b[j][i];
                }
            }
            return result;
        }

        //更新权重矩阵s(们), 和偏置(向量)S们
        void updateWeights(const std::vector<float>& inputs, const std::vector<float>& errors, const std::vector<float>& outputs,
            std::vector<std::vector<float>>& weights, std::vector<float>& biases, float lr) {
            for (size_t i = 0; i < weights.size(); i++) {
                for (size_t j = 0; j < weights[0].size(); j++) {
                    weights[i][j] += lr * errors[i] * sigmoid导函数prime(outputs[i]) * inputs[j];
                }
                biases[i] += lr * errors[i] * sigmoid导函数prime(outputs[i]);
            }
        }//void updateWeights(


public:
    NN神经网络NN(int inputNode输入层之节点数s, int hidden01Node隐藏层01结点数s, int hidden22Nodes, int outputNode输出层结点数s)
        :inputNode输入层之节点数s(inputNode输入层之节点数s), hidden01Node隐藏层01结点数s(hidden01Node隐藏层01结点数s), hidden22Nodes(hidden22Nodes), outputNode输出层结点数s(outputNode输出层结点数s)
    {
                srand(time(NULL));

                //初始换权重矩阵
                输入层到第1隐藏层之权重矩阵.resize(hidden01Node隐藏层01结点数s, vector<float>(inputNode输入层之节点数s));
                隐藏层1到第二隐藏层2之权重矩阵1to2.resize(hidden22Nodes, vector<float>(hidden01Node隐藏层01结点数s));
                隐藏22到输出层de权重矩阵.resize(outputNode输出层结点数s, vector<float>(hidden22Nodes));//

                隐藏层1偏置1.resize(hidden01Node隐藏层01结点数s);
                隐藏层2偏置2.resize(hidden22Nodes);
                O输出偏置o.resize(outputNode输出层结点数s);

                initWeightsAndBiases初始化权重和偏置矩阵();

    }//NN神经网络NN(i

        //sigmoid激活函数及导数
        float sigmoid(float x){ return 1.0 / (1.0 + exp(-x)); }
        float sigmoid导函数prime(float x) { return x * (1 - x); }

        //Forward前向传播
        vector<float> predict(const vector<float>& input输入数据) {

            //用激活函数sigmoid-激活的过程
            隐藏层1数据1 = activate(input输入数据, 输入层到第1隐藏层之权重矩阵, 隐藏层1偏置1); //激活函数
            // 第一隐藏层到第二隐藏层
            隐藏层2数据2 = activate(隐藏层1数据1, 隐藏层1到第二隐藏层2之权重矩阵1to2, 隐藏层2偏置2);//hidden1, wh1h2, bias_h2);

            // 第二隐藏层到输出层
            输出数据output = activate(隐藏层2数据2, 隐藏22到输出层de权重矩阵, O输出偏置o);// , wh2o, bias_o);

            return 输出数据output;

        }//vector<float>predict(


         // 反向传播//Backpropagation
        void train(const  vector<float>& inputs, const  vector<float>& target目标数据s, float lr学习率) {
             vector<float> output尝试的输出数据s = predict(inputs);

            // 输出层误差
             vector<float> output_error输出误差s = subtract(target目标数据s, output尝试的输出数据s);//
             Loss误差损失之和001 = 0.0;
            for (int ii = 0; ii < outputNode输出层结点数s; ++ii) { Loss误差损失之和001 += fabs(output_error输出误差s[ii]); }
            //=========================================================================

            // 隐藏层2误差
             vector<float> hidden2_errors = dotT(output_error输出误差s, 隐藏22到输出层de权重矩阵);

            // 隐藏层1误差
             vector<float> hidden1_errors = dotT(hidden2_errors, 隐藏层1到第二隐藏层2之权重矩阵1to2);

            // 更新权重: 隐藏层2到输出层(的权重矩阵
            updateWeights(隐藏层2数据2,   output_error输出误差s, output尝试的输出数据s, 隐藏22到输出层de权重矩阵, O输出偏置o, lr学习率);

            // 更新权重: 隐藏层1到隐藏层2
            updateWeights(隐藏层1数据1,   hidden2_errors, 隐藏层2数据2, 隐藏层1到第二隐藏层2之权重矩阵1to2, 隐藏层2偏置2, lr学习率);

            // 更新权重: 输入层到隐藏层1的权重矩阵)
            updateWeights(inputs,   hidden1_errors, 隐藏层1数据1, 输入层到第1隐藏层之权重矩阵, 隐藏层1偏置1, lr学习率);
        }// void train(
    // // 反向传播//Backpropagation

};//class NN神经网络NN {


#define Num训练数据的个数s 5
int main()
{
    NN神经网络NN nn(9, 11, 4, 2);// 11, 10, 4);
    // Example

    int 训练数据的个数s = Num训练数据的个数s;
    std::vector<float> input[Num训练数据的个数s];

/*  input[0] = {0,1,0, 0,1,0, 0,1,0};      //1“竖线”或 “1”字{ 1.0, 0.5, 0.25, 0.125 };
    input[1] = { 0,0,0, 1,1,1,0,0,0 };      //-“横线”或 “-”减号{ 1.0, 0.5, 0.25, 0.125 };
    input[2] = { 0,1,0, 1,1,1, 0,1,0 };      //+“+”加号{ 1.0, 0.5, 0.25, 0.125 };
    input[3] = { 0,1,0, 0,1.2, 0,  0,1, 0 };   // '1'或 '|'字型{ 1.0, 0.5, 0.25, 0.125 };
    input[4] = { 1,1,0, 1,0,1.2,  1,1,1 };      //“口”字型+{ 1.0, 0.5, 0.25, 0.125 };
    std::vector<float> target[Num训练数据的个数s];
    target[0] = { 1.0, 0,0,0 };// , 0};//1 , 0}; //0.0, 1.0, 0.5};      //{ 0.0, 1.0 };
    target[1] = { 0, 1.0 ,0,0 };// , 0};//- 91.0, 0};// , 0, 0}; //
    target[2] = { 0,0,1.0,0 };// , 0};//+ 1.0, 0.5};
    target[3] = { 1.0 ,0,0, 0.5 };// , 0}; //1
    target[4] = { 0,0,0,0 };// , 1.0}; //“口”
    */

    vector<float> target[Num训练数据的个数s];
    input[0] = { 0,0,0, 1,1,1, 0,0,0 };     target[0] = { 0, 1 };   //"-"
    input[1] = { 0,1,0, 0,1,0, 0,1,0 };     target[1] = { 1.0, 0 };
    input[2] = { 1,1,1, 0,0,0, 0,0,0 };     target[2] = { 0, 0.5 };
    input[3] = { 0,0,1, 0,0,1, 0,0,1 };     target[3] = { 0.9, 0 };


    for (int i = 0; i < 50000; ++i) {//for110i
        for (int jj = 0; jj < Num训练数据的个数s - 1;  ++jj) {
        //for (auto& val: input ) {
            nn.train(input[jj], target[jj], 0.001);
            if (0 ==i % 10000) { cout << "[Lost:" << Loss误差损失之和001 << endl; }
        
        }//for220jj

    }//for110i
    cout << endl;

    //--------------------------------------
    input[1] = { 0,0,0, 1,1, 0.98, 0,0,0 };      //1/ 
    std::vector<float> outpu输出数据001t = nn.predict(input[0]);

    for (auto& val : outpu输出数据001t)
        std::cout << std::fixed << std::setprecision(9) << val << " ";
    cout << endl;

    //-------------------------------------------------------------

    std::string str0001;
    do {
        std::cout << std::endl << "请输入一个字符串(要求字符串是包含9个由逗号分隔的数字的字符串,如 1,2,0,0,5,0,0,8,9等): " << std::endl;
        std::getline(std::cin, str0001);

        std::stringstream s01s001(str0001);
        for (int i = 0; i < 9; ++i) {
            std::string temp;
            std::getline(s01s001, temp, ',');

            input[1][i] = (float)std::stof(temp); // 将字符串转化为整数
        }

        std::cout << "数字数组为: ";
        for (int i = 0; i < 9; ++i) {
            std::cout << input[1][i] << " ";
        }

        outpu输出数据001t = nn.predict(input[1]);
        std::cout << std::endl;
        for (auto& val : outpu输出数据001t)
            std::cout << std::fixed << std::setprecision(9) << val << " ";

    } while (true);// 1 == 1);

    //======================================
     cout << "Hello World!\n";
}//

到了这里,关于C++最易读手撸神经网络两隐藏层(任意Nodes每层)梯度下降230820a的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【基于深度学习的人脸识别】(Dlib+ResNet残差神经网络)——QT(C++)+Linux

    dlib_face_recognition_resnet_model_v1.dat 是基于深度学习的人脸识别模型,是dlib库中的一个重要组件。该模型的原理涉及到深度卷积神经网络(DCNN)和具体的人脸识别算法。 dlib 人脸识别采用了 Resnet 残差神经网络,识别精度高于普通神经网络,同样我们可以到官网去下载训练好的模

    2024年04月23日
    浏览(53)
  • 神经网络基础-神经网络补充概念-30-搭建神经网络块

    搭建神经网络块是一种常见的做法,它可以帮助你更好地组织和复用网络结构。神经网络块可以是一些相对独立的模块,例如卷积块、全连接块等,用于构建更复杂的网络架构。

    2024年02月12日
    浏览(50)
  • 神经网络基础-神经网络补充概念-17-计算神经网络的输出

    计算神经网络的输出通常涉及前向传播(Forward Propagation)的过程,其中输入数据通过网络的层级结构,逐步被传递并变换,最终生成预测结果。下面我将为你展示一个简单的神经网络前向传播的示例。 假设我们有一个具有以下参数的简单神经网络: 输入层:2个神经元 隐藏

    2024年02月12日
    浏览(42)
  • 神经网络与卷积神经网络

    全连接神经网络是一种深度学习模型,也被称为多层感知机(MLP)。它由多个神经元组成的层级结构,每个神经元都与前一层的所有神经元相连,它们之间的连接权重是可训练的。每个神经元都计算输入的加权和,并通过一个非线性激活函数进行转换,然后将结果传递到下一

    2024年02月10日
    浏览(49)
  • 神经网络实验--卷积神经网络

    本实验主要为了掌握深度学习的基本原理;能够使用TensorFlow实现卷积神经网络,完成图像识别任务。 文章目录 1. 实验目的 2. 实验内容 3. 实验过程 题目一: 题目二: 实验小结讨论题 ①掌握深度学习的基本原理; ②能够使用TensorFlow实现卷积神经网络,完成图像识别任务。

    2024年02月06日
    浏览(55)
  • 神经网络基础-神经网络补充概念-40-神经网络权重的初始化

    神经网络权重的初始化是深度学习中的重要步骤,良好的权重初始化可以加速模型的训练收敛,提高模型的性能和稳定性。以下是一些常用的权重初始化方法: 零初始化(Zero Initialization):将权重初始化为零。然而,这种方法不太适合深层神经网络,因为它会导致所有神经

    2024年02月12日
    浏览(51)
  • 【神经网络】循环神经网络RNN和长短期记忆神经网络LSTM

    欢迎访问Blog总目录! 一文看尽RNN(循环神经网络) - 知乎 (zhihu.com) 一文搞懂RNN(循环神经网络)基础篇 - 知乎 (zhihu.com) 循环神经网络(Recurrent Neural Network, RNN)是一类以 序列 (sequence)数据为输入,在序列的演进方向进行 递归 (recursion)且所有节点(循环单元)按链式连

    2024年04月10日
    浏览(48)
  • 卷积神经网络与前馈神经网络

    常见的人工神经网络结构 人工神经网络是一类由人工神经元组成的网络,常见的神经网络结构包括: 前馈神经网络(Feedforward Neural Network,FNN):最简单的神经网络结构,由一个输入层、一个输出层和若干个隐藏层组成,信号只能从输入层流向输出层,不允许在网络中形成回

    2023年04月26日
    浏览(44)
  • 神经网络 04(神经网络的搭建)

    tf.Keras 中构建模有两种方式,一种是通过  Sequential  构建,一种是通过  Model  类构建。前者是按 一定的顺序对层进行堆叠 ,而后者可以用来 构建较复杂的网络模型 。首先我们介绍下用来构建网络的全连接层: units: 当前层中包含的神经元个数 Activation: 激活函数,relu,sig

    2024年02月09日
    浏览(30)
  • 神经网络基础-神经网络补充概念-53-将batch norm拟合进神经网络

    梯度消失问题的缓解:在深度神经网络中,梯度消失是一个常见的问题,特别是在深层网络中。批归一化通过在每个批次内对输入进行标准化,使得激活函数的输入分布更稳定,从而减轻了梯度消失问题,使得梯度更容易传播,促进了训练过程的稳定性和效率。 加速收敛:由

    2024年02月12日
    浏览(30)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包