插入排序的思想非常简单,生活中有一个很常见的场景:在打扑克牌时,我们一边抓牌一边给扑克牌排序,每次摸一张牌,就将它插入手上已有的牌中合适的位置,逐渐完成整个排序。
插入排序有两种写法:
- 交换法:在新数字插入过程中,不断与前面的数字交换,直到找到自己合适的位置。
- 移动法:在新数字插入过程中,与前面的数字不断比较,前面的数字不断向后挪出位置,当新数字找到自己的位置后,插入一次即可。
交换法插入排序
public static void insertSort(int[] arr) {
// 从第二个数开始,往前插入数字
for (int i = 1; i < arr.length; i++) {
// j 记录当前数字下标
int j = i;
// 当前数字比前一个数字小,则将当前数字与前一个数字交换
while (j >= 1 && arr[j] < arr[j - 1]) {
swap(arr, j, j - 1);
// 更新当前数字下标
j--;
}
}
}
private static void swap(int[] arr, int i, int j) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
当数字少于两个时,不存在排序问题,当然也不需要插入,所以我们直接从第二个数字开始往前插入。
整个过程就像是已经有一些数字坐成了一排,这时一个新的数字要加入,这个新加入的数字原本坐在这一排数字的最后一位,然后它不断地与前面的数字比较,如果前面的数字比它大,它就和前面的数字交换位置。
移动法插入排序
我们发现,在交换法插入排序中,每次交换数字时,swap 函数都会进行三次赋值操作。但实际上,新插入的这个数字并不一定适合与它交换的数字所在的位置。也就是说,它刚换到新的位置上不久,下一次比较后,如果又需要交换,它马上又会被换到前一个数字的位置。
由此,我们可以想到一种优化方案:让新插入的数字先进行比较,前面比它大的数字不断向后移动,直到找到适合这个新数字的位置后,新数字只做一次插入操作即可。
这种方案我们需要把新插入的数字暂存起来,代码如下:
public static void insertSort(int[] arr) {
// 从第二个数开始,往前插入数字
for (int i = 1; i < arr.length; i++) {
int currentNumber = arr[i];
int j = i - 1;
// 寻找插入位置的过程中,不断地将比 currentNumber 大的数字向后挪
while (j >= 0 && currentNumber < arr[j]) {
arr[j + 1] = arr[j];
j--;
}
// 两种情况会跳出循环:1. 遇到一个小于或等于 currentNumber 的数字,跳出循环,currentNumber 就坐到它后面。
// 2. 已经走到数列头部,仍然没有遇到小于或等于 currentNumber 的数字,也会跳出循环,此时 j 等于 -1,currentNumber 就坐到数列头部。
arr[j + 1] = currentNumber;
}
}
整个过程就像是已经有一些数字坐成了一排,这时一个新的数字要加入,所以这一排数字不断地向后腾出位置,当新的数字找到自己合适的位置后,就可以直接坐下了。重复此过程,直到排序结束。
时间复杂度 & 空间复杂度
插入排序过程需要两层循环,时间复杂度为O(n²);只需要常量级的临时变量,空间复杂度为 O(1)。
LC 912.排序数组
给你一个整数数组 nums
,请你将该数组升序排列。
示例 1:
输入:nums = [5,2,3,1]
输出:[1,2,3,5]
示例 2:文章来源:https://www.toymoban.com/news/detail-670561.html
输入:nums = [5,1,1,2,0,0]
输出:[0,0,1,1,2,5]文章来源地址https://www.toymoban.com/news/detail-670561.html
class Solution {
public int[] sortArray(int[] nums) {
int max = nums[0];
int min = nums[0];
for (int i = 1; i < nums.length; i++) {
if (max < nums[i]) {
max = nums[i];
} else if (min > nums[i]) {
min = nums[i];
}
}
int[] count = new int[max - min + 1];
for (int v : nums) {
count[v - min]++;
}
int k = 0;
for (int i = 0; i < count.length; i++) {
while (count[i] > 0) {
nums[k++] = i + min;
count[i]--;
}
}
return nums;
}
}
到了这里,关于排序算法:插入排序的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!