ARM开发,stm32mp157a-A7核IIC实验(采集温湿度传感器值)

这篇具有很好参考价值的文章主要介绍了ARM开发,stm32mp157a-A7核IIC实验(采集温湿度传感器值)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.实验目标:采集温湿度传感器值;

2.分析框图(模拟IIC控制器);

ARM开发,stm32mp157a-A7核IIC实验(采集温湿度传感器值),ARM,arm开发,stm32,嵌入式硬件,c语言

3.代码;

---iic.h封装时序协议头文件---
#ifndef __IIC_H__
#define __IIC_H__
#include "stm32mp1xx_gpio.h"
#include "stm32mp1xx_rcc.h"
/* 通过程序模拟实现I2C总线的时序和协议
 * GPIOF ---> AHB4
 * I2C1_SCL ---> PF14
 * I2C1_SDA ---> PF15
 *
 * */

#define SET_SDA_OUT     do{GPIOF->MODER &= (~(0x3 << 30)); \
							GPIOF->MODER |= (0x1 << 30);}while(0)
#define SET_SDA_IN      do{GPIOF->MODER &= (~(0x3 << 30));}while(0)

#define I2C_SCL_H       do{GPIOF->BSRR |= (0x1 << 14);}while(0)
#define I2C_SCL_L       do{GPIOF->BRR |= (0x1 << 14);}while(0)

#define I2C_SDA_H       do{GPIOF->BSRR |= (0x1 << 15);}while(0)
#define I2C_SDA_L       do{GPIOF->BRR |= (0x1 << 15);}while(0)

#define I2C_SDA_READ    (GPIOF->IDR & (0x1 << 15))

void delay_us(void);   //延时函数
void i2c_init(void);   //模拟I2C总线初始化
void i2c_start(void);   //开始信号时序
void i2c_stop(void);   //停止信号时序
void i2c_write_byte(unsigned char  dat);   //主机向从机写数据
unsigned char i2c_read_byte(unsigned char ack);   //主机从从机读取数据
unsigned char i2c_wait_ack(void);   //主机作为发送器,等待接收器返回的应答信号
void i2c_ack(void);   //主机作为接收器,给发送器发送应答信号
void i2c_nack(void);   //主机作为接收器时,给发送器发送非应答信号

#endif 
---iic.c封装时序函数实现---
#include "iic.h"

extern void printf(const char* fmt, ...);
/*
 * 函数名 : delay_us
 * 函数功能:延时函数
 * 函数参数:无
 * 函数返回值:无
 * */
void delay_us(void)
{
	unsigned int i = 2000;
	while(i--);
}
/*
 * 函数名 : i2c_init
 * 函数功能: i2C总线引脚的初始化, 通用输出,推挽输出,输出速度,
 * 函数参数:无
 * 函数返回值:无
 * */
void i2c_init(void)
{
 	// 使能GPIOF端口的时钟
	RCC->MP_AHB4ENSETR |= (0x1 << 5);
	// 设置PF14,PF15引脚为通用的输出功能
	GPIOF->MODER &= (~(0xF << 28));
	GPIOF->MODER |= (0x5 << 28);
	// 设置PF14, PF15引脚为推挽输出
	GPIOF->OTYPER &= (~(0x3 << 14));
	// 设置PF14, PF15引脚为高速输出
	GPIOF->OSPEEDR |= (0xF << 28);
	// 设置PF14, PF15引脚的禁止上拉和下拉
	GPIOF->PUPDR &= (~(0xF << 28));
	// 空闲状态SDA和SCL拉高 
	I2C_SCL_H;
	I2C_SDA_H;
}

/*
 * 函数名:i2c_start
 * 函数功能:模拟i2c开始信号的时序
 * 函数参数:无
 * 函数返回值:无
 * */
void i2c_start(void)
{
	/*
	 * 开始信号:时钟在高电平期间,数据线从高到低的变化
	 *     --------
	 * SCL         \
	 *              --------
	 *     ----
	 * SDA     \
	 *          --------
	 * */	
	//1.设置数据线为输出模式
	SET_SDA_OUT;

	//2.在SCL为高电平
	I2C_SCL_H;
	delay_us();

	//3.SDA高电平
	I2C_SDA_H;
	delay_us();

	//4.SDA低电平
	I2C_SDA_L;

	//5.起始信号产生之后,总线处于占用状态
	I2C_SCL_L;
}

/*
 * 函数名:i2c_stop
 * 函数功能:模拟i2c停止信号的时序
 * 函数参数:无
 * 函数返回值:无
 * */

void i2c_stop(void)
{
	/*
	 * 停止信号 : 时钟在高电平期间,数据线从低到高的变化 
	 *             ----------
	 * SCL        /
	 *    --------
	 *    ---         -------
	 * SDA   X       /
	 *    --- -------
	 * */

	//1.设置数据线输出模式
	SET_SDA_OUT;

	//2.SCL为低电平,改变数据线上数据
	I2C_SCL_L;
	delay_us();

	//3.SDA为低电平
	I2C_SDA_L;
	delay_us();

	//4.SCL为高电平
	I2C_SCL_H;
	delay_us();

	//5.SDA为高电平
	I2C_SDA_H;
	delay_us();
}

/*
 * 函数名: i2c_write_byte
 * 函数功能:主机向i2c总线上的从设备写8bits数据
 * 函数参数:dat : 等待发送的字节数据
 * 函数返回值: 无
 * */

void i2c_write_byte(unsigned char dat)
{
	/*
	 * 数据信号:时钟在低电平期间,发送器向数据线上写入数据
	 * 			时钟在高电平期间,接收器从数据线上读取数据 
	 *      ----          --------
	 * 	SCL     \        /        \
	 *           --------          --------
	 *      -------- ------------------ ---
	 * 	SDA         X                  X
	 *      -------- ------------------ ---
	 *
	 *      先发送高位在发送低位 
	 * */
	unsigned int i;

	//1.设置数据线为输出模式
	SET_SDA_OUT;

	//2.for循环,先发高位再发低位
	
	for(i=0; i<8; i++)
	{
		I2C_SCL_L;  //SCL低电平
		delay_us();

		if(dat & 0x80)  //先发高位
			I2C_SDA_H;  //3.向数据线上写入高电平
		else
			I2C_SDA_L;  //4.向数据线上写入低电平
		delay_us();

		I2C_SCL_H;  //5.等待从机从数据线上读取数据
		delay_us();
		delay_us();
		
		dat <<= 1;  //6.移位
	}
}

/*
 * 函数名:i2c_read_byte
 * 函数功能: 主机从i2c总线上的从设备读8bits数据, 
 *          主机发送一个应答或者非应答信号
 * 函数参数: 0 : 应答信号   1 : 非应答信号
 * 函数返回值:读到的有效数据
 *
 * */
unsigned char i2c_read_byte(unsigned char ack)
{
	/*
	 * 数据信号:时钟在低电平期间,发送器向数据线上写入数据
	 * 			时钟在高电平期间,接收器从数据线上读取数据 
	 *      ----          --------
	 * 	SCL     \        /        \
	 *           --------          --------
	 *      -------- ------------------ ---
	 * 	SDA         X                  X
	 *      -------- ------------------ ---
	 *
	 *      先接收高位, 在接收低位 
	 * */
	unsigned int i;
	unsigned char dat;

	SET_SDA_IN;  //1.设置数据线输入模式
	
	for(i=0; i<8; i++)
	{
		I2C_SCL_L;  //2保证发送器向数据线上写入数据完成
		delay_us();
		delay_us();

		I2C_SCL_H;  //3从数据线上读取数据
		delay_us();
		delay_us();
		dat <<= 1;  //4移位放if前面

		if(I2C_SDA_READ)
			dat |= 1;  //读取的数据为1
		else
			dat |= 0;  //读取的数据为0
		delay_us();
	}
		if(!ack)
			i2c_ack();  //主机给从机返回应答信号
		else
			i2c_nack();  //主机给从机返回非应答信号

		return dat;
}
/*
 * 函数名: i2c_wait_ack
 * 函数功能: 主机作为发送器时,等待接收器返回的应答信号
 * 函数参数:无
 * 函数返回值:
 *					0:接收到的应答信号
 *                  1:接收到的非应答信号
 * */
unsigned char i2c_wait_ack(void)
{
	/*
	 * 主机发送一个字节之后,从机给主机返回一个应答信号
	 *
	 *                   -----------
	 * SCL              /   M:读    \
	 *     -------------             --------
	 *     --- ---- --------------------
	 * SDA    X    X
	 *     ---      --------------------
	 *     主  释   从机    主机
	 *     机  放   向数据  读数据线
	 *         总   线写    上的数据
	 *         线   数据
	 * */	

	I2C_SCL_L;  //1设置SCL为低电平
	delay_us();

	I2C_SDA_H;  //2.释放数据线
	delay_us();
	SET_SDA_IN;  //3.设置数据线输入模式
	delay_us();

	I2C_SCL_H;  //SCL为高电平期间
	delay_us();

	//从总线上读取数据
	if(I2C_SDA_READ)
		return 1;  //读1 非应答信号
	
	I2C_SCL_L;  //SCL为低电平,总线处于占用状态
	return 0;  //读0 应答信号
} 
/*
 * 函数名: iic_ack
 * 函数功能: 主机作为接收器时,给发送器发送应答信号
 * 函数参数:无
 * 函数返回值:无
 * */
void i2c_ack(void)
{
	/*            --------
	 * SCL       /        \
	 *    -------          ------
	 *    ---
	 * SDA   X 
	 *    --- -------------
	 * */
	SET_SDA_OUT;  //1.数据线输出 
	I2C_SCL_L;   //2.SCL低电平,改变数据线上数据
	delay_us();

	I2C_SDA_L;  //3.应答信号==0
	delay_us();

	I2C_SCL_H;  //4.等待从机读取应答号
	delay_us();
	delay_us();
	I2C_SCL_L;  //5.总线处于占用状态
}
/*
 * 函数名: iic_nack
 * 函数功能: 主机作为接收器时,给发送器发送非应答信号
 * 函数参数:无
 * 函数返回值:无
 * */
void i2c_nack(void)
{
	/*            --------
	 * SCL       /        \
	 *    -------          ------
	 *    --- ---------------
	 * SDA   X 
	 *    --- 
	 * */		
	SET_SDA_OUT;  //1.数据线输出 
	I2C_SCL_L;   //2.SCL低电平,改变数据线上数据
	delay_us();

	I2C_SDA_H;  //3.非应答信号==1
	delay_us();

	I2C_SCL_H;  //4.等待从机读取应答号
	delay_us();
	delay_us();
	I2C_SCL_L;  //5.总线处于占用状态
}

---si7006.h读取温湿度头文件---
#ifndef __SI7006_H__
#define __SI7006_H__

#include "iic.h"
#define        SI7006_SLAVE      0x40

//初始化
void si7006_init(void);

//读取湿度
unsigned short si7006_read_hum_data(unsigned char slave_addr, unsigned char reg_addr);
//读取温度
short si7006_read_temp_data(unsigned char slave_addr, unsigned char reg_addr);


#endif //__SI7006_H__
---si7006.c读取温湿度函数---
#include "iic.h"
#include "si7006.h"
extern void delay_ms(unsigned int ms);
/*
 * 函数名:si7006_init
 * 函数功能:SI7006芯片的初始化
 * 函数参数:无
 * 函数返回值:无
*/
void si7006_init(void)
{
	i2c_init();  //模拟I2C总线初始化
	i2c_start();   //开始信号

	i2c_write_byte(SI7006_SLAVE << 1);  //发送从机地址+写0
	i2c_wait_ack();  //主机等待从机应答信号

	i2c_write_byte(0xE6);  //发送写用户寄存器1
	i2c_wait_ack(); 

	i2c_write_byte(0x3A);  //发送写用户寄存器1
	i2c_wait_ack(); 
	
	i2c_stop();  //停止信号
}

/*
 * 函数名:si7006_read_data
 * 函数功能:读取SI7006的转换结果
 * 函数参数:
 *     slave_addr : 从机地址
 *     reg_addr : 寄存器地址
 * 函数返回值:无
*/
unsigned short si7006_read_hum_data(unsigned char slave_addr, 
		unsigned char reg_addr)
{
	unsigned short dat;
	unsigned char dat_h;
	unsigned char dat_l;

	i2c_start();  //起始信号
	i2c_write_byte(slave_addr << 1 | 0);  //发送从机地址+写0
	i2c_wait_ack();  //主机等待从机应答信号

	i2c_write_byte(reg_addr);  //发送寄存器地址
	i2c_wait_ack();

	i2c_start();  //起始信号
	i2c_write_byte(slave_addr << 1 | 1);  //发送从机地址+读1
	i2c_wait_ack();

	delay_ms(5000);  //延时函数

	dat_h = i2c_read_byte(0);  //参数ack
	dat_l = i2c_read_byte(1);  //nack

	//高八位低八位拼接
	dat = dat_h;
	dat <<= 8;
	dat |= dat_l;

	return dat;
}

//温度
short si7006_read_temp_data(unsigned char slave_addr, 
		unsigned char reg_addr)
{
	short dat;
	unsigned char dat_h;
	unsigned char dat_l;

	i2c_start();  //起始信号
	i2c_write_byte(slave_addr << 1 | 0);  //发送从机地址+写0
	i2c_wait_ack();  //主机等待从机应答信号

	i2c_write_byte(reg_addr);  //发送寄存器地址
	i2c_wait_ack();

	i2c_start();  //起始信号
	i2c_write_byte(slave_addr << 1 | 1);  //发送从机地址+读1
	i2c_wait_ack();
	delay_ms(5000); //延时函数

	dat_h = i2c_read_byte(0);  //参数ack
	dat_l = i2c_read_byte(1);  //nack

	//高八位低八位拼接
	dat = dat_h;
	dat <<= 8;
	dat |= dat_l;

	return dat;

}

---main.c主函数测试---

#include "si7006.h"

extern void printf(const char *fmt, ...);

void delay_ms(int ms)
{
	int i,j;
	for(i = 0; i < ms;i++)
		for (j = 0; j < 1800; j++);
}

int main()
{
	short temp;
	unsigned short hum;
	si7006_init();

	while(1)
	{
		hum = si7006_read_hum_data(SI7006_SLAVE,0xE5);
		temp = si7006_read_temp_data(SI7006_SLAVE,0xE3);

		printf("hum = %d\n",hum*125/65536-6);
		printf("temp = %d\n",temp*176/65536-47);
	}

	return 0;

}

4.运行结果;

ARM开发,stm32mp157a-A7核IIC实验(采集温湿度传感器值),ARM,arm开发,stm32,嵌入式硬件,c语言文章来源地址https://www.toymoban.com/news/detail-670720.html

到了这里,关于ARM开发,stm32mp157a-A7核IIC实验(采集温湿度传感器值)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SQLite3移植STM32MP157 ARM开发板

    移植首先就得有源码,从SQLite官网下载最新版源码 下载地址 这里使用的环境为Ubuntu16 所以直接在Ubuntu下下载的。 下载完成后解压文件 进入解压后的目录 进入后可以看到解压出的源码文件如下 配置生成Makefile 在源码个目录下执行如下命令 –host为指定交叉编译器为arm-linux-

    2024年02月07日
    浏览(22)
  • 驱动开发,stm32mp157a开发板的led灯控制实验

            编写LED灯的驱动,在应用程序中编写控制LED灯亮灭的代码逻辑实现LED灯功能的控制; LED1-PE10 LED1亮灭: RCC寄存器[4]-1 0X50000A28 GPIOE_MODER[21:20]-01 (输出) 0X50006000 GPIOE_ODR[10]-1(输出高电平) 0(输出低电平)0X50006014 LED2-PF10 LED2亮灭: RCC寄存器[5]-1 0X50000A28 GPIOE_MODER[21:20]

    2024年02月09日
    浏览(18)
  • STM32物联网项目-SHT30温湿度采集(IIC通信)

    SHT30数字温湿度传感器 SHT3x湿度传感器系列包括低成本版本SHT30、标准版本SHT31,以及高端版本SHT35。 SHT3x湿度传感器系列结合了多种功能和各种接口(I2C、模拟电压输出),应用友好,工作电压范围宽(2.15至5.5 V),适合各类应用。 SHT3x建立在全新和优化的CMOSens® 芯片之上,

    2023年04月21日
    浏览(15)
  • cortex-A7核PWM实验--STM32MP157

    实验目的:驱动风扇,蜂鸣器,马达进行工作 目录 一,PWM相关概念 有源蜂鸣器和无源蜂鸣器 二,分析电路图,框图 三,分析RCC章节 1,确定总线连接 2,根据总线内容确定基地址 3.分析RCC章节所需寄存器 1,RCC_MP_AHB4ENSETR寄存器 2,RCC_MP_APB1ENSETR寄存器 四,分析GPIO章节寄存器

    2024年02月11日
    浏览(14)
  • STM32MP157驱动开发——按键驱动(中断)

    对于使用中断的按键驱动,内核自带的驱动程序 drivers/input/keyboard/gpio_keys.c 就可以,需要做的只是修改设备树指定引脚及键值 中断是引入其他基础知识的前提:休眠-唤醒、POLL 机制、异步通知、定时器、中断的线程化处理都离不开中断 设备树相关 查看原理图确定按键使用的

    2024年02月15日
    浏览(16)
  • STM32MP157驱动开发——按键驱动(tasklet)

    阅读Linux 系统中异常与中断可知,Linux 系统对中断处理的演进过程中,实现了中断的扩展:硬件中断、软件中断 硬件中断有:GPIO,网络中断(net),系统滴答中断(tick)等 软件中断有:定时器,tasklet等 内核中的软中断: 该数组里面有个action成员,该成员是个函数,函数会调

    2024年02月14日
    浏览(17)
  • STM32MP157驱动开发——按键驱动(工作队列)

    定时器、下半部 tasklet,它们都是在中断上下文中执行,它们无法休眠。当要处理更复杂的事情时,往往更耗时。这些更耗时的工作放在定时器或是下半部中,会使得系统很卡;并且循环等待某件事情完成也太浪费CPU 资源了。如果使用线程来处理这些耗时的工作,那就可以解

    2024年02月15日
    浏览(15)
  • STM32MP157驱动开发——按键驱动(异步通知)

    Linux 系统中也有很多信号,在 Linux 内核源文件 includeuapiasm-genericsignal.h 中,有很多信号的宏定义: 就 APP 而言,你想处理 SIGIO 信息,那么需要提供信号处理函数,并且要跟 SIGIO 挂钩。这可以通过一个 signal 函数 来“给某个信号注册处理函数”,用法如下: 重点从②开始:

    2024年02月15日
    浏览(26)
  • STM32MP157驱动开发——USB设备驱动

    参考文章:【正点原子】I.MX6U嵌入式Linux驱动开发——Linux USB驱动   由于 USB 协议太过庞大和复杂,所以本节只对 STM32MP157 自带的 USB 驱动进行使能和测试。详细的 USB 接口和协议的介绍,可以参考原子哥的资料《USB2.0 协议中文版.pdf》和《USB3.0 协议中文版.pdf》。   USB 全

    2023年04月14日
    浏览(18)
  • STM32MP157驱动开发——按键驱动(定时器)

    定时器涉及函数参考内核源码:includelinuxtimer.h 给定时器的各个参数赋值: 设置定时器 :主要是初始化 timer_list 结构体,设置其中的函数、参数。 a) 向内核添加定时器。timer-expires 表示超时时间。 b) 当超时时间到达,内核就会调用这个函数:timer-function(timer-data)。 修改定时

    2024年02月15日
    浏览(26)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包