第59步 深度学习图像识别:误判病例分析(TensorFlow)

这篇具有很好参考价值的文章主要介绍了第59步 深度学习图像识别:误判病例分析(TensorFlow)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

基于WIN10的64位系统演示

一、写在前面

本期内容对等于机器学习二分类系列的误判病例分析(传送门)。既然前面的数据可以这么分析,那么图形识别自然也可以。

本期以mobilenet_v2模型为例,因为它建模速度快。

同样,基于GPT-4辅助编程,后续会分享改写过程。

二、误判病例分析实战

继续使用胸片的数据集:肺结核病人和健康人的胸片的识别。其中,肺结核病人700张,健康人900张,分别存入单独的文件夹中。

(a)直接分享代码

######################################导入包###################################
from tensorflow import keras
import tensorflow as tf
from tensorflow.python.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropout, Activation, Reshape, Softmax, GlobalAveragePooling2D, BatchNormalization
from tensorflow.python.keras.layers.convolutional import Convolution2D, MaxPooling2D
from tensorflow.python.keras import Sequential
from tensorflow.python.keras import Model
from tensorflow.python.keras.optimizers import adam_v2
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator, image_dataset_from_directory
from tensorflow.python.keras.layers.preprocessing.image_preprocessing import RandomFlip, RandomRotation, RandomContrast, RandomZoom, RandomTranslation
import os,PIL,pathlib
import warnings
#设置GPU
gpus = tf.config.list_physical_devices("GPU")

    
warnings.filterwarnings("ignore")             #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号


################################导入数据集#####################################
data_dir = "./MTB"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:", image_count)

batch_size = 32
img_height = 100
img_width  = 100

# 创建一个数据集,其中包含所有图像的路径。
list_ds = tf.data.Dataset.list_files(str(data_dir/'*/*'), shuffle=True)
# 切分为训练集和验证集
val_size = int(image_count * 0.2)
train_ds = list_ds.skip(val_size)
val_ds = list_ds.take(val_size)

class_names = np.array(sorted([item.name for item in data_dir.glob('*') if item.name != "LICENSE.txt"]))
print(class_names)

def get_label(file_path):
    parts = tf.strings.split(file_path, os.path.sep)
    one_hot = parts[-2] == class_names
    return tf.argmax(one_hot)

def decode_img(img):
    img = tf.image.decode_jpeg(img, channels=3)
    img = tf.image.resize(img, [img_height, img_width])
    img = img / 255.0  # normalize to [0,1] range
    return img

def process_path_with_filename(file_path):
    label = get_label(file_path)
    img = tf.io.read_file(file_path)
    img = decode_img(img)
    return img, label, file_path

AUTOTUNE = tf.data.AUTOTUNE

# 在此处对train_ds和val_ds进行图像处理,包括添加文件名信息
train_ds_with_filenames = train_ds.map(process_path_with_filename, num_parallel_calls=AUTOTUNE)
val_ds_with_filenames = val_ds.map(process_path_with_filename, num_parallel_calls=AUTOTUNE)

# 对训练数据集进行批处理和预加载
train_ds_with_filenames = train_ds_with_filenames.batch(batch_size)
train_ds_with_filenames = train_ds_with_filenames.prefetch(buffer_size=AUTOTUNE)

# 对验证数据集进行批处理和预加载
val_ds_with_filenames = val_ds_with_filenames.batch(batch_size)
val_ds_with_filenames = val_ds_with_filenames.prefetch(buffer_size=AUTOTUNE)

# 在进行模型训练时,不需要文件名信息,所以在此处移除
train_ds = train_ds_with_filenames.map(lambda x, y, z: (x, y))
val_ds = val_ds_with_filenames.map(lambda x, y, z: (x, y))

for image, label, path in train_ds_with_filenames.take(1):
    print("Image shape: ", image.numpy().shape)
    print("Label: ", label.numpy())
    print("Path: ", path.numpy())


train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)

plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

for images, labels, paths in train_ds_with_filenames.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        plt.xlabel(class_names[labels[i]])

plt.show()


######################################数据增强函数################################

data_augmentation = Sequential([
  RandomFlip("horizontal_and_vertical"),
  RandomRotation(0.2),
  RandomContrast(1.0),
  RandomZoom(0.5, 0.2),
  RandomTranslation(0.3, 0.5),
])

def prepare(ds, augment=False):
    ds = ds.map(lambda x, y, z: (data_augmentation(x, training=True), y, z) if augment else (x, y, z), 
                num_parallel_calls=AUTOTUNE)
    return ds

train_ds_with_filenames = prepare(train_ds_with_filenames, augment=True)

# 在进行模型训练时,不需要文件名信息,所以在此处移除
train_ds = train_ds_with_filenames.map(lambda x, y, z: (x, y))
val_ds = val_ds_with_filenames.map(lambda x, y, z: (x, y))

train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)


###############################导入mobilenet_v2################################
#获取预训练模型对输入的预处理方法
from tensorflow.python.keras.applications import mobilenet_v2
from tensorflow.python.keras import Input, regularizers
IMG_SIZE = (img_height, img_width, 3)

base_model = mobilenet_v2.MobileNetV2(input_shape=IMG_SIZE, 
                                      include_top=False, #是否包含顶层的全连接层
                                      weights='imagenet')

inputs = Input(shape=IMG_SIZE)
#模型
x = base_model(inputs, training=False) #参数不变化
#全局池化
x = GlobalAveragePooling2D()(x)
#BatchNormalization
x = BatchNormalization()(x)
#Dropout
x = Dropout(0.8)(x)
#Dense
x = Dense(128, kernel_regularizer=regularizers.l2(0.1))(x)  # 全连接层减少到128,添加 L2 正则化
#BatchNormalization
x = BatchNormalization()(x)
#激活函数
x = Activation('relu')(x)
#输出层
outputs = Dense(2, kernel_regularizer=regularizers.l2(0.1))(x)  # 添加 L2 正则化
#BatchNormalization
outputs = BatchNormalization()(outputs)
#激活函数
outputs = Activation('sigmoid')(outputs)
#整体封装
model = Model(inputs, outputs)
#打印模型结构
print(model.summary())
#############################编译模型#########################################
#定义优化器
from tensorflow.python.keras.optimizers import adam_v2, rmsprop_v2

optimizer = adam_v2.Adam()


#编译模型
model.compile(optimizer=optimizer,
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])

#训练模型
from tensorflow.python.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler

NO_EPOCHS = 5
PATIENCE  = 10
VERBOSE   = 1

# 设置动态学习率
annealer = LearningRateScheduler(lambda x: 1e-5 * 0.99 ** (x+NO_EPOCHS))

# 设置早停
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)

# 
checkpointer = ModelCheckpoint('mtb_jet_best_model_mobilenetv3samll-1.h5',
                                monitor='val_accuracy',
                                verbose=VERBOSE,
                                save_best_only=True,
                                save_weights_only=True)

train_model  = model.fit(train_ds,
                  epochs=NO_EPOCHS,
                  verbose=1,
                  validation_data=val_ds,
                  callbacks=[earlystopper, checkpointer, annealer])

#保存模型
model.save('mtb_jet_best_model_mobilenet-1.h5')
print("The trained model has been saved.")

###########################误判病例分析#################################

# 训练模型后,现在使用模型对所有图片进行预测,并保存预测结果到csv文件中
import pandas as pd

# 保存预测结果的dataframe
result_df = pd.DataFrame(columns=["原始图片的名称", "属于训练集还是验证集", "预测为Tuberculosis的概率值", "判定的组别"])

# 对训练集和验证集中的每一批图片进行预测
for dataset, dataset_name in zip([train_ds_with_filenames, val_ds_with_filenames], ["训练集", "验证集"]):
    for images, labels, paths in dataset:
        # 使用模型对这一批图片进行预测
        probabilities = model.predict(images)
        predictions = tf.math.argmax(probabilities, axis=-1)

        # 遍历这一批图片
        for path, label, prediction, probability in zip(paths, labels, predictions, probabilities):
            # 获取图片名称和真实标签
            image_name = path.numpy().decode("utf-8").split('/')[-1]
            original_label = class_names[label]

            # 根据预测结果和真实标签,判定图片所属的组别
            group = None
            if original_label == "Tuberculosis" and probability[1] >= 0.5:
                group = "A"
            elif original_label == "Normal" and probability[1] < 0.5:
                group = "B"
            elif original_label == "Normal" and probability[1] >= 0.5:
                group = "C"
            elif original_label == "Tuberculosis" and probability[1] < 0.5:
                group = "D"

            # 将结果添加到dataframe中
            result_df = result_df.append({
                "原始图片的名称": image_name,
                "属于训练集还是验证集": dataset_name,
                "预测为Tuberculosis的概率值": probability[1],
                "判定的组别": group
            }, ignore_index=True)

# 保存结果到csv文件
result_df.to_csv("result.csv", index=False)

相比于之前的代码,主要有两处变化:

  1. 导入数据集部分:由之前的“image_dataset_from_directory”改成“tf.data.Dataset”,因为前者不能保存图片的原始路径和名称。而在误判病例分析中,我们需要知道每一张图片的名称、被预测的结果等详细信息。
  2. 误判病例分析部分:也就是需要知道哪些预测正确,哪些预测错误。

(b)调教GPT-4的过程

(b1)导入数据集部分:“image_dataset_from_directory”改成“tf.data.Dataset”

让GPT-4帮你改写即可,自行尝试:

################################导入数据集#####################################
data_dir = "./MTB"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:", image_count)

batch_size = 32
img_height = 100
img_width  = 100

# 创建一个数据集,其中包含所有图像的路径。
list_ds = tf.data.Dataset.list_files(str(data_dir/'*/*'), shuffle=True)
# 切分为训练集和验证集
val_size = int(image_count * 0.2)
train_ds = list_ds.skip(val_size)
val_ds = list_ds.take(val_size)

class_names = np.array(sorted([item.name for item in data_dir.glob('*') if item.name != "LICENSE.txt"]))
print(class_names)

def get_label(file_path):
    parts = tf.strings.split(file_path, os.path.sep)
    one_hot = parts[-2] == class_names
    return tf.argmax(one_hot)

def decode_img(img):
    img = tf.image.decode_jpeg(img, channels=3)
    img = tf.image.resize(img, [img_height, img_width])
    img = img / 255.0  # normalize to [0,1] range
    return img

def process_path_with_filename(file_path):
    label = get_label(file_path)
    img = tf.io.read_file(file_path)
    img = decode_img(img)
    return img, label, file_path

AUTOTUNE = tf.data.AUTOTUNE

# 在此处对train_ds和val_ds进行图像处理,包括添加文件名信息
train_ds_with_filenames = train_ds.map(process_path_with_filename, num_parallel_calls=AUTOTUNE)
val_ds_with_filenames = val_ds.map(process_path_with_filename, num_parallel_calls=AUTOTUNE)

# 对训练数据集进行批处理和预加载
train_ds_with_filenames = train_ds_with_filenames.batch(batch_size)
train_ds_with_filenames = train_ds_with_filenames.prefetch(buffer_size=AUTOTUNE)

# 对验证数据集进行批处理和预加载
val_ds_with_filenames = val_ds_with_filenames.batch(batch_size)
val_ds_with_filenames = val_ds_with_filenames.prefetch(buffer_size=AUTOTUNE)

# 在进行模型训练时,不需要文件名信息,所以在此处移除
train_ds = train_ds_with_filenames.map(lambda x, y, z: (x, y))
val_ds = val_ds_with_filenames.map(lambda x, y, z: (x, y))

for image, label, path in train_ds_with_filenames.take(1):
    print("Image shape: ", image.numpy().shape)
    print("Label: ", label.numpy())
    print("Path: ", path.numpy())


train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)

plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")

for images, labels, paths in train_ds_with_filenames.take(1):
    for i in range(15):
        plt.subplot(4, 5, i + 1)
        plt.xticks([])
        plt.yticks([])
        plt.grid(False)

        # 显示图片
        plt.imshow(images[i])
        # 显示标签
        plt.xlabel(class_names[labels[i]])

plt.show()


######################################数据增强函数################################

data_augmentation = Sequential([
  RandomFlip("horizontal_and_vertical"),
  RandomRotation(0.2),
  RandomContrast(1.0),
  RandomZoom(0.5, 0.2),
  RandomTranslation(0.3, 0.5),
])

def prepare(ds, augment=False):
    ds = ds.map(lambda x, y, z: (data_augmentation(x, training=True), y, z) if augment else (x, y, z), 
                num_parallel_calls=AUTOTUNE)
    return ds

train_ds_with_filenames = prepare(train_ds_with_filenames, augment=True)

# 在进行模型训练时,不需要文件名信息,所以在此处移除
train_ds = train_ds_with_filenames.map(lambda x, y, z: (x, y))
val_ds = val_ds_with_filenames.map(lambda x, y, z: (x, y))

train_ds = train_ds.prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.prefetch(buffer_size=AUTOTUNE)

代码解读:

数据导入:代码首先指定图像数据的存放路径(data_dir),并统计路径下的图像总数(image_count)。之后,它将图片的高度和宽度分别设定为100,并且指定批量处理的大小为32。

数据集创建:使用tf.data.Dataset.list_files创建一个包含所有图像路径的数据集,并通过洗牌(shuffle)打乱数据。然后,将20%的数据作为验证集,其余的作为训练集。

类别标签获取:根据文件夹名称作为类别标签,其中去除了名为"LICENSE.txt"的文件。

图像和标签处理:定义了几个函数来处理图像和标签。get_label函数通过切割文件路径获取类别标签并转为one-hot编码;decode_img函数将图像解码并调整大小,且将像素值归一化到[0,1]范围内;process_path_with_filename函数则通过调用前两个函数处理图像和标签。

并行处理和预加载:使用tf.data.AUTOTUNE对训练集和验证集进行并行处理和预加载,提高数据读取效率。

数据展示:展示了部分训练数据的图片、类别和文件路径,帮助我们对数据有个初步了解。

数据增强:定义了一个数据增强管道,其中包含了随机翻转、旋转、对比度调整、缩放和平移等操作。然后在训练集上应用这个数据增强管道。

(b2)误判病例分析部分

咒语:在{代码1}的基础上续写代码,达到下面要求:

(1)首先,提取出所有图片的“原始图片的名称”、“属于训练集还是验证集”、“预测为Tuberculosis的概率值”;文件的路劲格式为:例如,“MTB\Normal\Normal-690.png”属于Normal,也就是0标签,“MTB\Tuberculosis\Tuberculosis-680.png”属于Tuberculosis,也就是1标签;

(2)其次,由于模型以0.5为阈值,因此可以样本分为三份:(a)本来就是Tuberculosis的图片,预测为Tuberculosis的概率值大于等于0.5,则说明预测正确,判定为A组;(b)本来就是Normal的图片,预测为Tuberculosis的概率值小于0.5,则说明预测正确,判定为B组;(c)本来就是Normal的图片,预测为Tuberculosis的概率值大于等于0.5,则说明预测错误,判定为C组;(d)本来就是Tuberculosis的图片,预测为Tuberculosis的概率值小于0.5,则说明预测正确,判定为D组;

(3)居于以上计算的结果,生成一个名为result.csv表格文件。列名分别为:“原始图片的名称”、“属于训练集还是验证集”、“预测为Tuberculosis的概率值”、“判定的组别”。其中,“原始图片的名称”为所有1600张图片的图片名称;“属于训练集还是验证集”为这个图片属于训练集还是验证集;“预测为Tuberculosis的概率值”为模型预测该样本是Tuberculosis的概率值;“判定的组别”为根据步骤(3)判定的组别,A、B、C和D四组。

(4)需要把所有的图片都进行上面操作,注意是所有图片,而不只是一个批次的图片。

代码1为:{XXXX}

主要是把需求写清楚即可,代码及其解读:

# 训练模型后,现在使用模型对所有图片进行预测,并保存预测结果到csv文件中
import pandas as pd

# 保存预测结果的dataframe
result_df = pd.DataFrame(columns=["原始图片的名称", "属于训练集还是验证集", "预测为Tuberculosis的概率值", "判定的组别"])

# 对训练集和验证集中的每一批图片进行预测
for dataset, dataset_name in zip([train_ds_with_filenames, val_ds_with_filenames], ["训练集", "验证集"]):
    for images, labels, paths in dataset:
        # 使用模型对这一批图片进行预测
        probabilities = model.predict(images)
        predictions = tf.math.argmax(probabilities, axis=-1)

        # 遍历这一批图片
        for path, label, prediction, probability in zip(paths, labels, predictions, probabilities):
            # 获取图片名称和真实标签
            image_name = path.numpy().decode("utf-8").split('/')[-1]
            original_label = class_names[label]

            # 根据预测结果和真实标签,判定图片所属的组别
            group = None
            if original_label == "Tuberculosis" and probability[1] >= 0.5:
                group = "A"
            elif original_label == "Normal" and probability[1] < 0.5:
                group = "B"
            elif original_label == "Normal" and probability[1] >= 0.5:
                group = "C"
            elif original_label == "Tuberculosis" and probability[1] < 0.5:
                group = "D"

            # 将结果添加到dataframe中
            result_df = result_df.append({
                "原始图片的名称": image_name,
                "属于训练集还是验证集": dataset_name,
                "预测为Tuberculosis的概率值": probability[1],
                "判定的组别": group
            }, ignore_index=True)

# 保存结果到csv文件
result_df.to_csv("result.csv", index=False)

代码解读:

首先,代码创建了一个名为result_df的pandas DataFrame,用于存储预测结果。这个DataFrame有四个列,分别为"原始图片的名称"、"属于训练集还是验证集"、"预测为Tuberculosis的概率值"、"判定的组别"。

然后,代码开始遍历训练集和验证集中的每一批图片。对于每一批图片,首先使用训练好的模型进行预测,得到每个样本属于每个类别的概率值(probabilities)。然后,通过取概率值最大的类别作为预测结果(predictions)。

在对一批图片进行预测后,代码遍历这批图片。对于每个图片,代码首先从图片路径中获取图片名称(image_name),并从标签中获取图片的真实标签(original_label)。

然后,代码根据预测结果和真实标签判断图片属于哪个组别("A"、"B"、"C"、"D")。这里假设"Tuberculosis"和"Normal"是所有类别中的两个类别,而且概率值中的第二个元素表示的是预测为"Tuberculosis"的概率。具体的判断规则如下:

--如果真实标签是"Tuberculosis",且预测为"Tuberculosis"的概率值大于等于0.5,则图片属于组别"A"。

--如果真实标签是"Normal",且预测为"Tuberculosis"的概率值小于0.5,则图片属于组别"B"。

--如果真实标签是"Normal",且预测为"Tuberculosis"的概率值大于等于0.5,则图片属于组别"C"。

--如果真实标签是"Tuberculosis",且预测为"Tuberculosis"的概率值小于0.5,则图片属于组别"D"。

最后,代码将预测结果添加到result_df中,其中包含图片名称、数据集名称(训练集或验证集)、预测为"Tuberculosis"的概率值以及判定的组别。当所有图片都进行完预测后,将result_df保存为一个CSV文件

三、输出结果

第59步 深度学习图像识别:误判病例分析(TensorFlow),《100 Steps to Get ML》—JET学习笔记,深度学习,tensorflow,人工智能

 有了这个表,又可以水不少图了。

四、数据

链接:https://pan.baidu.com/s/15vSVhz1rQBtqNkNp2GQyVw?pwd=x3jf

提取码:x3jf 文章来源地址https://www.toymoban.com/news/detail-670814.html

到了这里,关于第59步 深度学习图像识别:误判病例分析(TensorFlow)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习篇之tensorflow(2) ---图像识别

    研究图像识别离不开两样东西:第一,大量的样本数据;第二,好的算法。从某种意义上来说,数据比算法更重要,算法只是决定了图像识别的准确率,但如果没有样本数据,图像识别就无从谈起了。 图像识别的关键:特征 和特征之间的相对位置。 首先是特征,我们记住一

    2024年02月08日
    浏览(29)
  • 第61步 深度学习图像识别:多分类建模(TensorFlow)

    一、写在前面 截至上期,我们一直都在做二分类的任务,无论是之前的机器学习任务,还是最近更新的图像分类任务。然而,在实际工作中,我们大概率需要进行多分类任务。例如肺部胸片可不仅仅能诊断肺结核,还有COVID-19、细菌性(病毒性)肺炎等等,这就涉及到图像识

    2024年02月11日
    浏览(37)
  • 第45步 深度学习图像识别:Nasnet建模(Tensorflow)

    一、写在前面 (1)Nasnet NASNet是由Google Brain团队在2017年提出的一种神经网络架构搜索(Neural Architecture Search,简称NAS)的结果。 NAS是一种用于自动化设计深度学习模型的技术。 在NAS中,机器学习算法 通过搜索和优化一系列可能的神经网络架构,然后挑选出性能最好的那一个

    2024年02月12日
    浏览(29)
  • 第56步 深度学习图像识别:CNN梯度权重类激活映射(TensorFlow)

    一、写在前面 类激活映射(Class Activation Mapping,CAM)和梯度权重类激活映射(Gradient-weighted Class Activation Mapping,Grad-CAM) 是两种可视化深度学习模型决策过程的技术。他们都是为了理解模型的决策过程,特别是对于图像分类任务,它们可以生成一种热力图,这种图可以突出显

    2024年02月13日
    浏览(48)
  • 第55步 深度学习图像识别:CNN特征层和卷积核可视化(TensorFlow)

    一、写在前面 (1)CNN可视化 在理解和解释卷积神经网络(CNN)的行为方面,可视化工具起着重要的作用。以下是一些可以用于可视化的内容: (a)激活映射(Activation maps): 可以显示模型在训练过程中的激活情况,这可以帮助我们理解每一层(或每个过滤器)在识别图像

    2024年02月14日
    浏览(70)
  • 深度学习系列59:文字识别

    使用google加的tesseract,效果不错。 首先安装tesseract,在mac直接brew install即可。 python调用代码: 使用百度家的paddleocr可以达成如下效果: 安装方法:pip install “paddleocr=2.2”,调用代码。 其中画图的部分如果要用的话,需要下载字体库:!git clone https://gh.api.99988866.xyz/https://g

    2024年02月22日
    浏览(33)
  • 深度学习图像识别笔记(三):yolov5检测结果分析

    是一种可视化工具,特别用于监督学习。通过这个矩阵,可以很清晰地看出机器是否将两个不同的类混淆了。 上图的表格其实就是 confusion matrix True/False: 预测结果是否正确 Positive/Negative:预测的方向是正方向还是负方向 真阳性(True Positive, TP): 预测为正样本,实际为正样

    2023年04月25日
    浏览(41)
  • AI:132-基于深度学习的涉案人脸图像识别与敲诈勒索嫌疑分析

    🚀点击这里跳转到本专栏,可查阅专栏顶置最新的指南宝典~ 🎉🎊🎉 你的技术旅程将在这里启航! 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的关键代码,详细讲

    2024年02月22日
    浏览(37)
  • 基于tensorflow深度学习的猫狗分类识别

      🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 实验背景 实验目的 实验环境 实验过程 1.加载数据 2.数据预处理 3.构建模型 4.训练模

    2024年02月10日
    浏览(43)
  • 大数据深度学习:基于Tensorflow深度学习卷积神经网络CNN算法垃圾分类识别系统

    随着社会的发展和城市化进程的加速,垃圾分类已经成为了环境保护和可持续发展的重要课题。然而,传统的垃圾分类方法通常依赖于人工识别,效率低下且易出错。因此,本项目旨在利用大数据和深度学习技术,构建一个基于 TensorFlow 深度学习的神经网络 CNN(Convolutional

    2024年04月14日
    浏览(92)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包