opencv进阶14-Harris角点检测-cv2.cornerHarris

这篇具有很好参考价值的文章主要介绍了opencv进阶14-Harris角点检测-cv2.cornerHarris。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

类似于人的眼睛和大脑,OpenCV可以检测图像的主要特征并将这 些特征提取到所谓的图像描述符中。然后,可以将这些特征作为数据
库,支持基于图像的搜索。此外,我们可以使用关键点将图像拼接起 来,组成更大的图像。(想象一下把很多图片放到一起组成一幅360°的全景图。)

本节将展示如何使用OpenCV检测图像中的特征,并利用这些特征
匹配和检索图像。在本节的学习过程中,我们会获取样本图像并检测
其主要特征,然后试着在另一幅图像中找到与样本图像匹配的区域。
我们还将找到样本图像和另一幅图像匹配区域之间的单应性或者空间
关系。

Harris角点检测是计算机视觉领域中一种经典的角点检测算法,它可以用于许多应用场景。

以下是一些Harris角点检测的应用场景

图像配准: 在图像配准中,Harris角点检测可以用于找到两幅图像中具有相似特征的角点,从而进行图像对齐和匹配。

物体跟踪: 在目标跟踪中,Harris角点检测可以用于提取图像中的显著特征,帮助识别和跟踪目标。

摄像头标定: 在摄像头标定中,Harris角点检测可以用于检测摄像头拍摄图像中的角点,帮助计算摄像头的内参和外参。

三维重建: 在三维重建中,Harris角点检测可以用于提取图像中的关键特征点,帮助建立图像间的对应关系,从而实现场景的三维重建。

物体识别: 在物体识别中,Harris角点检测可以用于提取图像中的特征点,帮助识别和分类不同的物体。

自动驾驶: 在自动驾驶领域,Harris角点检测可以用于检测图像中的道路边缘和关键特征,帮助自动驾驶系统判断道路情况。

图像拼接: 在图像拼接中,Harris角点检测可以用于提取图像中的角点,帮助找到不同图像之间的对应关系,实现图像拼接和全景图生成。

图像匹配: 在图像匹配中,Harris角点检测可以用于寻找两幅图像中具有相似特征的角点,从而进行图像配准和匹配。

理解特征检测和匹配的类型

OpenCV中最常用的特征检测和描述符提取算法如下:

  • Harris:该算法适用于角点检测。
  • SIFT:该算法适用于斑点检测。
  • SURF:该算法适用于斑点检测。
  • FAST:该算法适用于角点检测。
  • BRIEF:该算法适用于斑点检测。
  • ORB:它是Oriented FAST和Rotated BRIEF的联合缩写。ORB对于角点和斑点的组合检测很有用。

可以通过下列方法进行特征匹配:

  • 蛮力匹配。
  • 基于FLANN的匹配。

可以通过单应性进行空间验证。

究竟什么是特征?

为什么图像的某个特定区域可以归类为特征,而其他区域则不能分类为特征呢?广义地说,特征是图像中独特或容易识别的一个感兴趣区域。具有高密度纹理细节的角点和区域是好的特征,而在低密度区域(如蓝天)不断重复出现的模式就不是好的特征。边缘是好的特征,因为它们倾向于把图像分割成两个区域。斑点(与周围区域有很大差别的图像区域)也是一个有趣的特征。

大多数特征检测算法都围绕着角点、边缘和斑点的识别展开,有
些还关注岭(ridge)的概念,其中岭可以概念化为细长物体的对称
轴。(例如,想象一下识别图像中的道路。)

有些算法更擅长识别和提取特定类型的特征,所以了解输入图像
是什么很重要
,这样就可以利用OpenCV中的最佳工具了。

检测Harris角点

什么是角点?

在计算机视觉和图像处理中,角点(Corner)是图像中突出的、有角度的、明显的像素点。角点通常位于图像中物体的边缘、纹理或其他特征的交叉点,是图像中的显著特征点。角点对于图像处理中的许多任务,如特征匹配、目标跟踪、3D重建等,具有重要的作用。

角点具有以下特征:

局部极大值: 在角点周围的邻域中,角点的像素值应该是局部最大值。

方向变化: 角点处的像素点方向会在不同方向上有较大的变化,这是因为角点是明显的图像特征。

明暗对比: 角点处的像素点周围可能是明暗对比较大的区域,因为角点是由物体的边缘、纹理等特征交叉形成的。

可重复性: 角点在不同的尺度和旋转下仍然可以被检测到,这使得它们在不同场景中都有用途。

下面看一下角点的类型:
opencv进阶14-Harris角点检测-cv2.cornerHarris,opencv 进阶,计算机视觉,人工智能,opencv,人工智能,计算机视觉

cv2.cornerHarris 函数说明

dst=cv2.cornerHarris(img, blockSize, ksize, k)

公式中参数:

  • img表示原始图像
  • blockSize表示角点检测中的领域大小
  • ksize表示Sobel求导中使用的窗口大小
  • k表示Harris 角点检测方程中的自由参数,取值参数为[0,04, 0.06]

代码示例:

import numpy as np
import cv2

# 读取待检测的图像
img = cv2.imread('chess_board.png')
# 转换为灰度图像
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
# 调用函数 cornerHarris,检测角点,其中参数 2 表示 Sobel 算子的孔径大小,23 表示 Sobel 算子的孔径大小,0.04 表示 Harris 角点检测方程中的 k 值
dst = cv2.cornerHarris(gray,2,23,0.04)

dst = cv2.dilate(dst,None)
# 将检测到的角点标记出来
img[dst>0.01*dst.max()]=[0,0,255]

cv2.imshow('dst',img)

cv2.waitKey(0)
cv2.destroyAllWindows()

运行效果:

opencv进阶14-Harris角点检测-cv2.cornerHarris,opencv 进阶,计算机视觉,人工智能,opencv,人工智能,计算机视觉
这里,我们选取的像素的分值至少是最高分值的1%,并在原始图
像中将这些像素涂成红色。文章来源地址https://www.toymoban.com/news/detail-671081.html

到了这里,关于opencv进阶14-Harris角点检测-cv2.cornerHarris的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • opencv 进阶15-检测DoG特征并提取SIFT描述符cv2.SIFT_create()

    前面我们已经了解了Harris函数来进行角点检测,因为角点的特性,这些角点在图像旋转的时候也可以被检测到。但是,如果我们放大或缩小图像时,就可能会丢失图像的某些部分,甚至有可能增加角点的质量。这种损失的现象需要一种与图像比例无关的角点检测方法来解决。

    2024年02月11日
    浏览(53)
  • Harris角点检测

    图像特征的分类:边缘、角点、纹理。 角点检测(准确来说角点不是特征,但检测出来的角点可以用来提取和表示总结为特征)也被称为特征点检测,Harris是基于角点的特征描述子,主要用于图像特征点的匹配,属于图像的局部特征。 在局部小范围里,如果在各个方向上移

    2024年02月08日
    浏览(54)
  • 基于Python手动实现Harris角点检测

    最近在上数字图像处理课程,需要使用Python手动编写Harris角点检测算法,但是网上几乎没有找到手动编写的,只能手敲。 同时作为自己的第一篇博客,在这里记录一下。 原理(略) 可以参考博主 拾牙慧者 的博客 角点检测(Harris角点检测法)_拾牙慧者的博客-CSDN博客_harri

    2023年04月14日
    浏览(46)
  • 基于MATLAB的Harris角点检测完成图片全景拼接

    目录 作业概要 1 原理及实现 1 2.1. 模块1 Harris角点检测 1 根据角点响应函数计算每个像素点的角点响应值; 2 2.2. 模块2 关键点的描述及其匹配 3 2.2.1. 生成描述向量 3 2.2.2. 匹配描述子 4 输出matched_points和匹配点对数count; 5 2.3. 模块3 转换矩阵的估计 5 输出仿射变换矩阵H。 6 2

    2024年01月17日
    浏览(47)
  • 【OpenCV常用函数:轮廓检测+外接矩形检测】cv2.findContours()+cv2.boundingRect()

    对具有黑色背景的二值图像寻找白色区域的轮廓,因此一般都会先经过cvtColor()灰度化和threshold()二值化后的图像作为输入。 例如,如下的轮廓检测出的结果contours和hierarchy。 根据轮廓点检测对应轮廓的外接矩形

    2024年02月13日
    浏览(59)
  • OpenCV基本图像处理操作(十)——图像特征harris角点

    角点 角点是图像中的一个特征点,指的是两条边缘交叉的点,这样的点在图像中通常表示一个显著的几角。在计算机视觉和图像处理中,角点是重要的特征,因为它们通常是图像中信息丰富的区域,可以用于图像分析、对象识别、3D建模等多种应用。 角点的识别可以帮助在进

    2024年04月23日
    浏览(64)
  • Harris和Shi-tomasi角点检测笔记(详细推导)

            一般来说,角点就是极值点,在某些属性上强度最大或者最小的孤立点、线段的终点或拐点等。其实理解角点可以按照我们的直觉来理解,以下图为例,图中用颜色标注的地方都是角点:         原图地址:理解经典角点检测算法–Harris角点 | 码农家园         

    2024年02月11日
    浏览(43)
  • 【Python】进阶学习:OpenCV--一文详解cv2.namedWindow()

    【Python】进阶学习:OpenCV–一文详解cv2.namedWindow() 🌈 个人主页:高斯小哥 🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~ 💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、

    2024年03月20日
    浏览(129)
  • 【OpenCV】cv2.HoughLines()霍夫直线检测

    霍夫直线检测(Hough Line Transform)是一种在图像中检测直线的经典算法。它通过将二维图像空间中的点映射到极坐标空间中,将直线检测问题转化为在参数空间中找到交点的问题。 原理: 对于图像空间中的每个边缘点,计算其对应在极坐标空间中可能的直线。 极坐标空间中

    2024年02月05日
    浏览(60)
  • opencv 边缘检测 cv2.Canny()详解

    👨‍💻 个人简介: 深度学习图像领域工作者 🎉 总结链接:              链接中主要是个人工作的总结,每个链接都是一些常用demo,代码直接复制运行即可。包括:                     📌 1.工作中常用深度学习脚本                     📌 2.to

    2024年02月03日
    浏览(70)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包